基于分位数的动态生存外向性及其应用

IF 0.7 4区 数学 Q2 MATHEMATICS
Amir Hamzeh KHAMMAR, Seyyed Mahdi AMİR JAHANSHAHİ, Hassan ZAREİ
{"title":"基于分位数的动态生存外向性及其应用","authors":"Amir Hamzeh KHAMMAR, Seyyed Mahdi AMİR JAHANSHAHİ, Hassan ZAREİ","doi":"10.15672/hujms.823331","DOIUrl":null,"url":null,"abstract":"The cumulative residual extropy is an uncertainty measure that parallels extropy in an absolutely continuous cumulative distribution function. The dynamic version of this measure is known as dynamic survival extropy. In this paper, we study some properties of the dynamic survival extropy using quantile function approach. Unlike the dynamic survival extropy, the quantile-based dynamic survival extropy determines the quantile density function uniquely through a simple relationship. We also extend the definition of quantile-based dynamic survival extropy into order statistics. Finally, an application of new quantile-based uncertainty measure as a risk measure is derived.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"24 8","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Quantile-Based Dynamic Survival Extropy and its Applications\",\"authors\":\"Amir Hamzeh KHAMMAR, Seyyed Mahdi AMİR JAHANSHAHİ, Hassan ZAREİ\",\"doi\":\"10.15672/hujms.823331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cumulative residual extropy is an uncertainty measure that parallels extropy in an absolutely continuous cumulative distribution function. The dynamic version of this measure is known as dynamic survival extropy. In this paper, we study some properties of the dynamic survival extropy using quantile function approach. Unlike the dynamic survival extropy, the quantile-based dynamic survival extropy determines the quantile density function uniquely through a simple relationship. We also extend the definition of quantile-based dynamic survival extropy into order statistics. Finally, an application of new quantile-based uncertainty measure as a risk measure is derived.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"24 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.823331\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15672/hujms.823331","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

累积剩余外向性是一种与绝对连续累积分布函数中的外向性平行的不确定性测度。这种测量的动态版本被称为动态生存外向性。本文用分位数函数法研究了动态生存外向性的一些性质。与动态生存外向性不同,基于分位数的动态生存外向性通过简单的关系唯一地确定分位数密度函数。我们还将基于分位数的动态生存外向性的定义扩展到有序统计量。最后,给出了一种新的基于分位数的不确定性测度作为风险测度的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Quantile-Based Dynamic Survival Extropy and its Applications
The cumulative residual extropy is an uncertainty measure that parallels extropy in an absolutely continuous cumulative distribution function. The dynamic version of this measure is known as dynamic survival extropy. In this paper, we study some properties of the dynamic survival extropy using quantile function approach. Unlike the dynamic survival extropy, the quantile-based dynamic survival extropy determines the quantile density function uniquely through a simple relationship. We also extend the definition of quantile-based dynamic survival extropy into order statistics. Finally, an application of new quantile-based uncertainty measure as a risk measure is derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信