{"title":"番茄对肥料养分整合和除草剂喷洒的响应:生长、产量、果实品质和除草剂残留评价","authors":"Yerra Pavani, Ponnusamy Janaki, Ramasamy Jagadeeswaran, Arjunan Sankari, Alaguthevar Ramalakshmi, Palanisamy Murali Arthanari","doi":"10.14719/pst.2857","DOIUrl":null,"url":null,"abstract":"The interaction between fertilizer nutrients and pesticides and their impact on tomato production and quality has been insufficiently studied in tropical agricultural conditions. This research investigated four fertilizer nutrient management (FNM) approaches: major nutrients (NPK), micronutrients, farmyard manure (FYM) and traditional farmer practices (FP), alongside three herbicides—glyphosate, pendimethalin and metribuzin applied using seven methods. Results highlighted the substantial influence of FNM strategies and herbicide applications on tomato growth and yield parameters such as plant height, cluster count, fruits per plant, fruit number and yield per plant. Notably, the NPK+FYM strategy consistently yielded superior results across herbicides and application methods. Individually applied herbicides, particularly glyphosate, exhibited detrimental effects on growth and yield parameters, and the negative impact was conspicuously higher with glyphosate > metribuzin > pendimethalin than with their sequential or combined application. While herbicides decreased tomato yield across FNM practices, the reduction ranged from 1.90–10.95%, 1.79–6.75%, 1.62–6.49% and 1.40–9.10% in NPK, NPK+MN, NPK+FYM and FP treatments, respectively. Fruit quality remained unaffected by FNM practices and herbicides, except for elevated ascorbic acid content and shelf life under NPK+FYM. Herbicide residues in tomato fruits were within permissible limits (below 0.1 mg/kg for glyphosate and 0.05 mg/kg for pendimethalin and metribuzin) across treatments. This study showed that the NPK+FYM practice is the best strategy for increasing the tomato yield and quality parameters besides reducing the herbicide’s toxicity effect on tomato growth at an early stage.","PeriodicalId":20236,"journal":{"name":"Plant Science Today","volume":"39 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of tomato to fertilizer nutrients integration and herbicides spray: Evaluating growth, yield, fruit quality and herbicides residue\",\"authors\":\"Yerra Pavani, Ponnusamy Janaki, Ramasamy Jagadeeswaran, Arjunan Sankari, Alaguthevar Ramalakshmi, Palanisamy Murali Arthanari\",\"doi\":\"10.14719/pst.2857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction between fertilizer nutrients and pesticides and their impact on tomato production and quality has been insufficiently studied in tropical agricultural conditions. This research investigated four fertilizer nutrient management (FNM) approaches: major nutrients (NPK), micronutrients, farmyard manure (FYM) and traditional farmer practices (FP), alongside three herbicides—glyphosate, pendimethalin and metribuzin applied using seven methods. Results highlighted the substantial influence of FNM strategies and herbicide applications on tomato growth and yield parameters such as plant height, cluster count, fruits per plant, fruit number and yield per plant. Notably, the NPK+FYM strategy consistently yielded superior results across herbicides and application methods. Individually applied herbicides, particularly glyphosate, exhibited detrimental effects on growth and yield parameters, and the negative impact was conspicuously higher with glyphosate > metribuzin > pendimethalin than with their sequential or combined application. While herbicides decreased tomato yield across FNM practices, the reduction ranged from 1.90–10.95%, 1.79–6.75%, 1.62–6.49% and 1.40–9.10% in NPK, NPK+MN, NPK+FYM and FP treatments, respectively. Fruit quality remained unaffected by FNM practices and herbicides, except for elevated ascorbic acid content and shelf life under NPK+FYM. Herbicide residues in tomato fruits were within permissible limits (below 0.1 mg/kg for glyphosate and 0.05 mg/kg for pendimethalin and metribuzin) across treatments. This study showed that the NPK+FYM practice is the best strategy for increasing the tomato yield and quality parameters besides reducing the herbicide’s toxicity effect on tomato growth at an early stage.\",\"PeriodicalId\":20236,\"journal\":{\"name\":\"Plant Science Today\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14719/pst.2857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14719/pst.2857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Response of tomato to fertilizer nutrients integration and herbicides spray: Evaluating growth, yield, fruit quality and herbicides residue
The interaction between fertilizer nutrients and pesticides and their impact on tomato production and quality has been insufficiently studied in tropical agricultural conditions. This research investigated four fertilizer nutrient management (FNM) approaches: major nutrients (NPK), micronutrients, farmyard manure (FYM) and traditional farmer practices (FP), alongside three herbicides—glyphosate, pendimethalin and metribuzin applied using seven methods. Results highlighted the substantial influence of FNM strategies and herbicide applications on tomato growth and yield parameters such as plant height, cluster count, fruits per plant, fruit number and yield per plant. Notably, the NPK+FYM strategy consistently yielded superior results across herbicides and application methods. Individually applied herbicides, particularly glyphosate, exhibited detrimental effects on growth and yield parameters, and the negative impact was conspicuously higher with glyphosate > metribuzin > pendimethalin than with their sequential or combined application. While herbicides decreased tomato yield across FNM practices, the reduction ranged from 1.90–10.95%, 1.79–6.75%, 1.62–6.49% and 1.40–9.10% in NPK, NPK+MN, NPK+FYM and FP treatments, respectively. Fruit quality remained unaffected by FNM practices and herbicides, except for elevated ascorbic acid content and shelf life under NPK+FYM. Herbicide residues in tomato fruits were within permissible limits (below 0.1 mg/kg for glyphosate and 0.05 mg/kg for pendimethalin and metribuzin) across treatments. This study showed that the NPK+FYM practice is the best strategy for increasing the tomato yield and quality parameters besides reducing the herbicide’s toxicity effect on tomato growth at an early stage.