{"title":"零维多项式系统零的无平方正态表示","authors":"Juan Xu , Dongming Wang , Dong Lu","doi":"10.1016/j.jsc.2023.102273","DOIUrl":null,"url":null,"abstract":"<div><p>For any zero-dimensional polynomial ideal <span><math><mi>I</mi></math></span> and any nonzero polynomial <em>F</em>, this paper shows that the union of the multi-set of zeros of the ideal sum <span><math><mi>I</mi><mo>+</mo><mo>〈</mo><mi>F</mi><mo>〉</mo></math></span> and that of the ideal quotient <span><math><mi>I</mi><mo>:</mo><mo>〈</mo><mi>F</mi><mo>〉</mo></math></span> is equal to the multi-set of zeros of <span><math><mi>I</mi></math></span>, where zeros are counted with multiplicities. Based on this zero relation and the computation of Gröbner bases, a complete multiplicity-preserved algorithm is proposed to decompose any zero-dimensional polynomial set into finitely many squarefree normal triangular sets, resulting in a squarefree normal representation for the zeros of the polynomial set. In the representation the multiplicities of the zeros of the triangular sets can be read out directly. Examples and experiments are presented to illustrate the algorithm and its performance.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Squarefree normal representation of zeros of zero-dimensional polynomial systems\",\"authors\":\"Juan Xu , Dongming Wang , Dong Lu\",\"doi\":\"10.1016/j.jsc.2023.102273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For any zero-dimensional polynomial ideal <span><math><mi>I</mi></math></span> and any nonzero polynomial <em>F</em>, this paper shows that the union of the multi-set of zeros of the ideal sum <span><math><mi>I</mi><mo>+</mo><mo>〈</mo><mi>F</mi><mo>〉</mo></math></span> and that of the ideal quotient <span><math><mi>I</mi><mo>:</mo><mo>〈</mo><mi>F</mi><mo>〉</mo></math></span> is equal to the multi-set of zeros of <span><math><mi>I</mi></math></span>, where zeros are counted with multiplicities. Based on this zero relation and the computation of Gröbner bases, a complete multiplicity-preserved algorithm is proposed to decompose any zero-dimensional polynomial set into finitely many squarefree normal triangular sets, resulting in a squarefree normal representation for the zeros of the polynomial set. In the representation the multiplicities of the zeros of the triangular sets can be read out directly. Examples and experiments are presented to illustrate the algorithm and its performance.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717123000871\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000871","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
对于任意零维多项式理想I和任意非零多项式F,证明了理想和I+ < F >的多零集并与理想商I: < F >的多零集并等于I的多零集,其中零是有多重数的。基于这种零关系和Gröbner基的计算,提出了一种完全保多重的算法,将任意零维多项式集分解为有限多个无平方正规三角集,得到多项式集的零点的无平方正态表示。在这种表示中,三角集合的零点的多重性可以直接读出。通过实例和实验说明了该算法及其性能。
Squarefree normal representation of zeros of zero-dimensional polynomial systems
For any zero-dimensional polynomial ideal and any nonzero polynomial F, this paper shows that the union of the multi-set of zeros of the ideal sum and that of the ideal quotient is equal to the multi-set of zeros of , where zeros are counted with multiplicities. Based on this zero relation and the computation of Gröbner bases, a complete multiplicity-preserved algorithm is proposed to decompose any zero-dimensional polynomial set into finitely many squarefree normal triangular sets, resulting in a squarefree normal representation for the zeros of the polynomial set. In the representation the multiplicities of the zeros of the triangular sets can be read out directly. Examples and experiments are presented to illustrate the algorithm and its performance.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.