通货膨胀能否预测能源价格波动?

IF 13.6 2区 经济学 Q1 ECONOMICS
Jonathan A. Batten, Di Mo, Armin Pourkhanali
{"title":"通货膨胀能否预测能源价格波动?","authors":"Jonathan A. Batten,&nbsp;Di Mo,&nbsp;Armin Pourkhanali","doi":"10.1016/j.eneco.2023.107158","DOIUrl":null,"url":null,"abstract":"<div><p>Fluctuations in energy prices impact production costs and inflation. This study examines whether inflation data can predict volatility in energy markets. Both inflation and energy market volatility exhibit complex behaviour over time, including structural shifts due to demand and supply shocks. Accounting for differences in data frequencies, we use an extended GARCH model (MIDAS) with Laguerre polynomials for time-varying parameters. The empirical results demonstrate that including low-frequency inflation data enhances energy model predictability particularly during periods of high volatility and extreme price fluctuations. Considering inflation improves forecasting for energy market models, benefiting portfolio management and helping policymakers manage inflation.</p></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"129 ","pages":"Article 107158"},"PeriodicalIF":13.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0140988323006564/pdfft?md5=d2e75f3444df669230dc4112f2b8fb5c&pid=1-s2.0-S0140988323006564-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Can inflation predict energy price volatility?\",\"authors\":\"Jonathan A. Batten,&nbsp;Di Mo,&nbsp;Armin Pourkhanali\",\"doi\":\"10.1016/j.eneco.2023.107158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluctuations in energy prices impact production costs and inflation. This study examines whether inflation data can predict volatility in energy markets. Both inflation and energy market volatility exhibit complex behaviour over time, including structural shifts due to demand and supply shocks. Accounting for differences in data frequencies, we use an extended GARCH model (MIDAS) with Laguerre polynomials for time-varying parameters. The empirical results demonstrate that including low-frequency inflation data enhances energy model predictability particularly during periods of high volatility and extreme price fluctuations. Considering inflation improves forecasting for energy market models, benefiting portfolio management and helping policymakers manage inflation.</p></div>\",\"PeriodicalId\":11665,\"journal\":{\"name\":\"Energy Economics\",\"volume\":\"129 \",\"pages\":\"Article 107158\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0140988323006564/pdfft?md5=d2e75f3444df669230dc4112f2b8fb5c&pid=1-s2.0-S0140988323006564-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140988323006564\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988323006564","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

能源价格的波动会影响生产成本和通货膨胀。本研究探讨了通胀数据能否预测能源市场的波动。随着时间的推移,通货膨胀和能源市场的波动性都会表现出复杂的行为,包括需求和供给冲击导致的结构性变化。考虑到数据频率的差异,我们使用了一个扩展的 GARCH 模型(MIDAS),并对时变参数使用了拉盖尔多项式。实证结果表明,纳入低频通胀数据可增强能源模型的可预测性,尤其是在高波动性和极端价格波动时期。考虑通货膨胀因素可提高能源市场模型的预测能力,有利于投资组合管理并帮助决策者管理通货膨胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can inflation predict energy price volatility?

Fluctuations in energy prices impact production costs and inflation. This study examines whether inflation data can predict volatility in energy markets. Both inflation and energy market volatility exhibit complex behaviour over time, including structural shifts due to demand and supply shocks. Accounting for differences in data frequencies, we use an extended GARCH model (MIDAS) with Laguerre polynomials for time-varying parameters. The empirical results demonstrate that including low-frequency inflation data enhances energy model predictability particularly during periods of high volatility and extreme price fluctuations. Considering inflation improves forecasting for energy market models, benefiting portfolio management and helping policymakers manage inflation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Economics
Energy Economics ECONOMICS-
CiteScore
18.60
自引率
12.50%
发文量
524
期刊介绍: Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信