Suzana J. Camargo , Hiroyuki Murakami , Nadia Bloemendaal , Savin S. Chand , Medha S. Deshpande , Christian Dominguez-Sarmiento , Juan Jesús González-Alemán , Thomas R. Knutson , I.-I. Lin , Il-Ju Moon , Christina M. Patricola , Kevin A. Reed , Malcolm J. Roberts , Enrico Scoccimarro , Chi Yung (Francis) Tam , Elizabeth J. Wallace , Liguang Wu , Yohei Yamada , Wei Zhang , Haikun Zhao
{"title":"气候自然变率和人为气候变化对热带气旋影响的最新进展","authors":"Suzana J. Camargo , Hiroyuki Murakami , Nadia Bloemendaal , Savin S. Chand , Medha S. Deshpande , Christian Dominguez-Sarmiento , Juan Jesús González-Alemán , Thomas R. Knutson , I.-I. Lin , Il-Ju Moon , Christina M. Patricola , Kevin A. Reed , Malcolm J. Roberts , Enrico Scoccimarro , Chi Yung (Francis) Tam , Elizabeth J. Wallace , Liguang Wu , Yohei Yamada , Wei Zhang , Haikun Zhao","doi":"10.1016/j.tcrr.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>A substantial number of studies have been published since the Ninth International Workshop on Tropical Cyclones (IWTC-9) in 2018, improving our understanding of the effect of climate change on tropical cyclones (TCs) and associated hazards and risks. These studies have reinforced the robustness of increases in TC intensity and associated TC hazards and risks due to anthropogenic climate change. New modeling and observational studies suggested the potential influence of anthropogenic climate forcings, including greenhouse gases and aerosols, on global and regional TC activity at the decadal and century time scales. However, there are still substantial uncertainties owing to model uncertainty in simulating historical TC decadal variability in the Atlantic, and the limitations of observed TC records. The projected future change in the global number of TCs has become more uncertain since IWTC-9 due to projected increases in TC frequency by a few climate models. A new paradigm, TC seeds, has been proposed, and there is currently a debate on whether seeds can help explain the physical mechanism behind the projected changes in global TC frequency. New studies also highlighted the importance of large-scale environmental fields on TC activity, such as snow cover and air-sea interactions. Future projections on TC translation speed and medicanes are new additional focus topics in our report. Recommendations and future research are proposed relevant to the remaining scientific questions and assisting policymakers.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"12 3","pages":"Pages 216-239"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603223000437/pdfft?md5=da849840a8fa5d957f8661c9bf34ba21&pid=1-s2.0-S2225603223000437-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An update on the influence of natural climate variability and anthropogenic climate change on tropical cyclones\",\"authors\":\"Suzana J. Camargo , Hiroyuki Murakami , Nadia Bloemendaal , Savin S. Chand , Medha S. Deshpande , Christian Dominguez-Sarmiento , Juan Jesús González-Alemán , Thomas R. Knutson , I.-I. Lin , Il-Ju Moon , Christina M. Patricola , Kevin A. Reed , Malcolm J. Roberts , Enrico Scoccimarro , Chi Yung (Francis) Tam , Elizabeth J. Wallace , Liguang Wu , Yohei Yamada , Wei Zhang , Haikun Zhao\",\"doi\":\"10.1016/j.tcrr.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A substantial number of studies have been published since the Ninth International Workshop on Tropical Cyclones (IWTC-9) in 2018, improving our understanding of the effect of climate change on tropical cyclones (TCs) and associated hazards and risks. These studies have reinforced the robustness of increases in TC intensity and associated TC hazards and risks due to anthropogenic climate change. New modeling and observational studies suggested the potential influence of anthropogenic climate forcings, including greenhouse gases and aerosols, on global and regional TC activity at the decadal and century time scales. However, there are still substantial uncertainties owing to model uncertainty in simulating historical TC decadal variability in the Atlantic, and the limitations of observed TC records. The projected future change in the global number of TCs has become more uncertain since IWTC-9 due to projected increases in TC frequency by a few climate models. A new paradigm, TC seeds, has been proposed, and there is currently a debate on whether seeds can help explain the physical mechanism behind the projected changes in global TC frequency. New studies also highlighted the importance of large-scale environmental fields on TC activity, such as snow cover and air-sea interactions. Future projections on TC translation speed and medicanes are new additional focus topics in our report. Recommendations and future research are proposed relevant to the remaining scientific questions and assisting policymakers.</p></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":\"12 3\",\"pages\":\"Pages 216-239\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2225603223000437/pdfft?md5=da849840a8fa5d957f8661c9bf34ba21&pid=1-s2.0-S2225603223000437-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603223000437\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603223000437","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
An update on the influence of natural climate variability and anthropogenic climate change on tropical cyclones
A substantial number of studies have been published since the Ninth International Workshop on Tropical Cyclones (IWTC-9) in 2018, improving our understanding of the effect of climate change on tropical cyclones (TCs) and associated hazards and risks. These studies have reinforced the robustness of increases in TC intensity and associated TC hazards and risks due to anthropogenic climate change. New modeling and observational studies suggested the potential influence of anthropogenic climate forcings, including greenhouse gases and aerosols, on global and regional TC activity at the decadal and century time scales. However, there are still substantial uncertainties owing to model uncertainty in simulating historical TC decadal variability in the Atlantic, and the limitations of observed TC records. The projected future change in the global number of TCs has become more uncertain since IWTC-9 due to projected increases in TC frequency by a few climate models. A new paradigm, TC seeds, has been proposed, and there is currently a debate on whether seeds can help explain the physical mechanism behind the projected changes in global TC frequency. New studies also highlighted the importance of large-scale environmental fields on TC activity, such as snow cover and air-sea interactions. Future projections on TC translation speed and medicanes are new additional focus topics in our report. Recommendations and future research are proposed relevant to the remaining scientific questions and assisting policymakers.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones