{"title":"二氧化锰在丝素纳米颗粒上的仿生成核,用于设计覆盆子结构肿瘤环境响应的抗癌纳米载体","authors":"Jie Wang, Yecheng Wang, Yuping Chen, Ruyin Lv, Yanfang Yu, Junwen Wang, Qichao Cheng, Yajun Shuai, Yuyin Chen, Chuanbin Mao, Mingying Yang","doi":"10.1002/anbr.202300056","DOIUrl":null,"url":null,"abstract":"<p>\n <i>Bombyx mori</i> silk fibroin is a natural biomacromolecule that can be assembled into nanoparticles. Manganese dioxide (MnO<sub>2</sub>) is responsive to tumor microenvironment (TME). Herein, SF and MnO<sub>2</sub> is integrated to develop novel TME-responsive drug carriers. Specifically, silk fibroin nanoparticles (SF-NPs) are used as a biotemplates to regulate the nucleation and self-assembly of MnO<sub>2</sub> for designing the complex drug delivery (SM-NPs). The SM-NPs are further modified by polyethylene glycol and folic acid to improve their stability and tumor targeting. The resultant nanocarriers (SMPF-NPs) present a raspberry-like structure with lamellar MnO<sub>2</sub> nanoparticles coating on its surface. The SMPF-NPs show a high drug-loading capability and selectively release drugs in acidic TME. Due to the catalytic activity of MnO<sub>2</sub>, the SMPF-NPs generate high levels of oxygen under H<sub>2</sub>O<sub>2</sub> and produce more reactive oxygen after loading Ce6. In vivo and in vitro analysis prove that SMPF-NPs can accumulate in breast tumor tissues, efficiently kill cancer cells, and destroy breast cancer tumors by a combination of chemotherapy and photodynamic therapy (PDT). Moreover, the SMPF-NPs also provide fluorescence and magnetic resonance (MR) imaging for guiding cancer therapy. These results suggest that the self-assembled SF and MnO<sub>2</sub> nanocomplex could be a novel TME-responsive nanodrug delivery system.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300056","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Nucleation of Manganese Oxide on Silk Fibroin Nanoparticles for Designing Raspberry-Structured Tumor Environment-Responsive Anticancer Nanocarriers\",\"authors\":\"Jie Wang, Yecheng Wang, Yuping Chen, Ruyin Lv, Yanfang Yu, Junwen Wang, Qichao Cheng, Yajun Shuai, Yuyin Chen, Chuanbin Mao, Mingying Yang\",\"doi\":\"10.1002/anbr.202300056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\n <i>Bombyx mori</i> silk fibroin is a natural biomacromolecule that can be assembled into nanoparticles. Manganese dioxide (MnO<sub>2</sub>) is responsive to tumor microenvironment (TME). Herein, SF and MnO<sub>2</sub> is integrated to develop novel TME-responsive drug carriers. Specifically, silk fibroin nanoparticles (SF-NPs) are used as a biotemplates to regulate the nucleation and self-assembly of MnO<sub>2</sub> for designing the complex drug delivery (SM-NPs). The SM-NPs are further modified by polyethylene glycol and folic acid to improve their stability and tumor targeting. The resultant nanocarriers (SMPF-NPs) present a raspberry-like structure with lamellar MnO<sub>2</sub> nanoparticles coating on its surface. The SMPF-NPs show a high drug-loading capability and selectively release drugs in acidic TME. Due to the catalytic activity of MnO<sub>2</sub>, the SMPF-NPs generate high levels of oxygen under H<sub>2</sub>O<sub>2</sub> and produce more reactive oxygen after loading Ce6. In vivo and in vitro analysis prove that SMPF-NPs can accumulate in breast tumor tissues, efficiently kill cancer cells, and destroy breast cancer tumors by a combination of chemotherapy and photodynamic therapy (PDT). Moreover, the SMPF-NPs also provide fluorescence and magnetic resonance (MR) imaging for guiding cancer therapy. These results suggest that the self-assembled SF and MnO<sub>2</sub> nanocomplex could be a novel TME-responsive nanodrug delivery system.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomimetic Nucleation of Manganese Oxide on Silk Fibroin Nanoparticles for Designing Raspberry-Structured Tumor Environment-Responsive Anticancer Nanocarriers
Bombyx mori silk fibroin is a natural biomacromolecule that can be assembled into nanoparticles. Manganese dioxide (MnO2) is responsive to tumor microenvironment (TME). Herein, SF and MnO2 is integrated to develop novel TME-responsive drug carriers. Specifically, silk fibroin nanoparticles (SF-NPs) are used as a biotemplates to regulate the nucleation and self-assembly of MnO2 for designing the complex drug delivery (SM-NPs). The SM-NPs are further modified by polyethylene glycol and folic acid to improve their stability and tumor targeting. The resultant nanocarriers (SMPF-NPs) present a raspberry-like structure with lamellar MnO2 nanoparticles coating on its surface. The SMPF-NPs show a high drug-loading capability and selectively release drugs in acidic TME. Due to the catalytic activity of MnO2, the SMPF-NPs generate high levels of oxygen under H2O2 and produce more reactive oxygen after loading Ce6. In vivo and in vitro analysis prove that SMPF-NPs can accumulate in breast tumor tissues, efficiently kill cancer cells, and destroy breast cancer tumors by a combination of chemotherapy and photodynamic therapy (PDT). Moreover, the SMPF-NPs also provide fluorescence and magnetic resonance (MR) imaging for guiding cancer therapy. These results suggest that the self-assembled SF and MnO2 nanocomplex could be a novel TME-responsive nanodrug delivery system.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.