使用少量发射无线电频率链的绿色全息多输入多输出通信

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS
Shuaishuai Guo;Jia Ye;Kaiqian Qu;Shuping Dang
{"title":"使用少量发射无线电频率链的绿色全息多输入多输出通信","authors":"Shuaishuai Guo;Jia Ye;Kaiqian Qu;Shuping Dang","doi":"10.1109/TGCN.2023.3318986","DOIUrl":null,"url":null,"abstract":"Holographic multiple-input multiple-output (MIMO) communications are widely recognized as a promising candidate for the next-generation air interface. With holographic MIMO surface, the number of the spatial degrees-of-freedom (DoFs) considerably increases and also significantly varies as the user moves. To fully employ the large and varying number of spatial DoFs, the number of equipped RF chains has to be larger than or equal to the largest number of spatial DoFs. However, this causes much waste as radio frequency (RF) chains (especially the transmit RF chains) are costly and power-hungry. To avoid the heavy burden, this paper investigates green holographic MIMO communications with a few transmit RF chains under an electromagnetic-based communication model. We not only look at the fundamental capacity limits but also propose an effective transmission, namely non-uniform holographic pattern modulation (NUHPM), to achieve the capacity limit in the high signal-to-noise (SNR) regime. The analytical result sheds light on the green evaluation of MIMO communications, which can be realized by increasing the size of the antenna aperture without increasing the number of transmit RF chains. Numerical results are provided to verify our analysis and to show the great performance gain by employing the additional spatial DoFs as modulation resources.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Holographic MIMO Communications With a Few Transmit Radio Frequency Chains\",\"authors\":\"Shuaishuai Guo;Jia Ye;Kaiqian Qu;Shuping Dang\",\"doi\":\"10.1109/TGCN.2023.3318986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Holographic multiple-input multiple-output (MIMO) communications are widely recognized as a promising candidate for the next-generation air interface. With holographic MIMO surface, the number of the spatial degrees-of-freedom (DoFs) considerably increases and also significantly varies as the user moves. To fully employ the large and varying number of spatial DoFs, the number of equipped RF chains has to be larger than or equal to the largest number of spatial DoFs. However, this causes much waste as radio frequency (RF) chains (especially the transmit RF chains) are costly and power-hungry. To avoid the heavy burden, this paper investigates green holographic MIMO communications with a few transmit RF chains under an electromagnetic-based communication model. We not only look at the fundamental capacity limits but also propose an effective transmission, namely non-uniform holographic pattern modulation (NUHPM), to achieve the capacity limit in the high signal-to-noise (SNR) regime. The analytical result sheds light on the green evaluation of MIMO communications, which can be realized by increasing the size of the antenna aperture without increasing the number of transmit RF chains. Numerical results are provided to verify our analysis and to show the great performance gain by employing the additional spatial DoFs as modulation resources.\",\"PeriodicalId\":13052,\"journal\":{\"name\":\"IEEE Transactions on Green Communications and Networking\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Green Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10263988/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10263988/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

全息多输入多输出(MIMO)通信被广泛认为是下一代空中接口的理想候选方案。在全息多输入多输出(MIMO)表面,空间自由度(DoF)的数量大大增加,并且随着用户的移动而显著变化。要充分利用大量不同的空间自由度,配备的射频链数量必须大于或等于最大的空间自由度数量。然而,由于射频(RF)链(尤其是发射射频链)成本高且耗电量大,这会造成很大的浪费。为了避免这一沉重负担,本文在基于电磁的通信模型下,研究了使用少量发射射频链的绿色全息多输入多输出通信。我们不仅研究了基本容量限制,还提出了一种有效的传输方式,即非均匀全息模式调制(NUHPM),以在高信噪比(SNR)条件下达到容量限制。分析结果揭示了多输入多输出(MIMO)通信的绿色评估,可以通过增大天线孔径而不增加发射射频链的数量来实现。我们还提供了数值结果来验证我们的分析,并展示了利用额外的空间多场作为调制资源所带来的巨大性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Holographic MIMO Communications With a Few Transmit Radio Frequency Chains
Holographic multiple-input multiple-output (MIMO) communications are widely recognized as a promising candidate for the next-generation air interface. With holographic MIMO surface, the number of the spatial degrees-of-freedom (DoFs) considerably increases and also significantly varies as the user moves. To fully employ the large and varying number of spatial DoFs, the number of equipped RF chains has to be larger than or equal to the largest number of spatial DoFs. However, this causes much waste as radio frequency (RF) chains (especially the transmit RF chains) are costly and power-hungry. To avoid the heavy burden, this paper investigates green holographic MIMO communications with a few transmit RF chains under an electromagnetic-based communication model. We not only look at the fundamental capacity limits but also propose an effective transmission, namely non-uniform holographic pattern modulation (NUHPM), to achieve the capacity limit in the high signal-to-noise (SNR) regime. The analytical result sheds light on the green evaluation of MIMO communications, which can be realized by increasing the size of the antenna aperture without increasing the number of transmit RF chains. Numerical results are provided to verify our analysis and to show the great performance gain by employing the additional spatial DoFs as modulation resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信