在轨服务低轨道综合体轨道结构优化技术

Pub Date : 2023-08-09 DOI:10.15407/knit2023.04.003
Yu. M. GOLDSHTEIN
{"title":"在轨服务低轨道综合体轨道结构优化技术","authors":"Yu. M. GOLDSHTEIN","doi":"10.15407/knit2023.04.003","DOIUrl":null,"url":null,"abstract":"Most of the currently planned on-orbit servicing (OOS) missions involve the use of disposable OOS spacecraft. The use of disposable OOS spacecraft may be profitable in the near future. But it is not a reliable solution for OOS in the long term. As an alternative, a more useful concept is the use of reusable OOS complexes, which allow responding to scheduled and random requests from OOS clients. This concept can ensure the timeliness and efficiency of OOS implementation during planned services and random requests of OOS clients. However, despite the potential advantage of a reusable OOS, the design of its orbital structure and operational maintenance is much more complicated in comparison with the traditional concept of the organization of OOS. This is because when planning the response of reusable OOS complexes to requests, it is necessary to distribute OOS client service operations between space vehicles of the reusable OOS complex. Now the space industry is switching its attention to the area of low Earth orbits. This causes an increase in deployed and planned low-orbit satellite groups, the number of satellites in them, the difference in structural schemes of satellite groups, and the significant influence of the environment on orbital parameters. As you know, the orbital parameters of low orbits of space vehicles can differ significantly, and the difference between them can reach tens or even hundreds of degrees in the longitude of the ascending node. This leads to unacceptably high energy costs for modern OOS spacecraft for active rotation of the planes of their original orbits to the planes of the destination orbits. In some works, the possibility of reducing these energy costs due to the use of the difference in the speed of the nodal precession of the parking and destination orbits of the OOS spacecraft due to the non-centrality of the Earth’s gravitational field is considered. However, due to the long wait of the OOS spacecraft in the parking orbit, the flight time with the wait between the parking and destination orbits increases significantly. Its reduction can be achieved by increasing the number and rational selection of the semi-major axis and inclination of the parking orbits of the OOS spacecraft. The purpose of the article is to develop a technique for the optimal synthesis of the orbital structure and optimal operational planning of the low-orbit OOS complex in near-Earth orbits with a small eccentricity. Methods for solving the problem are the averaging method, the branch-and-bound method, and the multiobjective optimization method. The novelty of the obtained results lies in the development of a technique for optimal synthesis of the orbital structure and optimal operational planning of the low-orbit space OOS complex in near-Earth orbits with low eccentricity. The developed technique can be used in the previous planning and design of space OOS complexes in low near-Earth orbits with a small eccentricity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ORBITAL STRUCTURE OPTIMIZATION TECHNIQUE OF THE LOW-ORBIT COMPLEX OF ON-ORBIT SERVICE\",\"authors\":\"Yu. M. GOLDSHTEIN\",\"doi\":\"10.15407/knit2023.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the currently planned on-orbit servicing (OOS) missions involve the use of disposable OOS spacecraft. The use of disposable OOS spacecraft may be profitable in the near future. But it is not a reliable solution for OOS in the long term. As an alternative, a more useful concept is the use of reusable OOS complexes, which allow responding to scheduled and random requests from OOS clients. This concept can ensure the timeliness and efficiency of OOS implementation during planned services and random requests of OOS clients. However, despite the potential advantage of a reusable OOS, the design of its orbital structure and operational maintenance is much more complicated in comparison with the traditional concept of the organization of OOS. This is because when planning the response of reusable OOS complexes to requests, it is necessary to distribute OOS client service operations between space vehicles of the reusable OOS complex. Now the space industry is switching its attention to the area of low Earth orbits. This causes an increase in deployed and planned low-orbit satellite groups, the number of satellites in them, the difference in structural schemes of satellite groups, and the significant influence of the environment on orbital parameters. As you know, the orbital parameters of low orbits of space vehicles can differ significantly, and the difference between them can reach tens or even hundreds of degrees in the longitude of the ascending node. This leads to unacceptably high energy costs for modern OOS spacecraft for active rotation of the planes of their original orbits to the planes of the destination orbits. In some works, the possibility of reducing these energy costs due to the use of the difference in the speed of the nodal precession of the parking and destination orbits of the OOS spacecraft due to the non-centrality of the Earth’s gravitational field is considered. However, due to the long wait of the OOS spacecraft in the parking orbit, the flight time with the wait between the parking and destination orbits increases significantly. Its reduction can be achieved by increasing the number and rational selection of the semi-major axis and inclination of the parking orbits of the OOS spacecraft. The purpose of the article is to develop a technique for the optimal synthesis of the orbital structure and optimal operational planning of the low-orbit OOS complex in near-Earth orbits with a small eccentricity. Methods for solving the problem are the averaging method, the branch-and-bound method, and the multiobjective optimization method. The novelty of the obtained results lies in the development of a technique for optimal synthesis of the orbital structure and optimal operational planning of the low-orbit space OOS complex in near-Earth orbits with low eccentricity. The developed technique can be used in the previous planning and design of space OOS complexes in low near-Earth orbits with a small eccentricity.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/knit2023.04.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/knit2023.04.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前计划的大多数在轨服务(OOS)任务都涉及使用一次性OOS航天器。在不久的将来,使用一次性OOS航天器可能是有利可图的。但从长远来看,这并不是一个可靠的OOS解决方案。作为替代方案,一个更有用的概念是使用可重用的OOS复合物,它允许响应来自OOS客户机的计划和随机请求。这个概念可以确保在计划服务和OOS客户随机请求期间OOS实施的及时性和效率。然而,尽管可重复使用的OOS具有潜在的优势,但与传统的OOS组织概念相比,其轨道结构的设计和运行维护要复杂得多。这是因为在规划可重用OOS综合体对请求的响应时,有必要在可重用OOS综合体的空间飞行器之间分配OOS客户服务操作。现在,航天工业正把注意力转向近地轨道领域。这导致部署和规划的低轨道卫星群的增加、卫星数量的增加、卫星群结构方案的差异以及环境对轨道参数的显著影响。大家知道,航天飞行器的低轨道轨道参数会有很大的差异,在升交点的经度上,它们之间的差异可以达到几十度甚至上百度。这导致现代OOS航天器主动旋转其原始轨道平面到目标轨道平面的能量成本高得令人无法接受。在一些工作中,考虑了由于地球引力场的非中心性而使用OOS航天器的停泊轨道和目的地轨道的节点进动速度的差异,从而降低这些能量成本的可能性。然而,由于OOS航天器在泊位轨道上的等待时间较长,在泊位轨道与目的地轨道之间的等待时间显著增加。通过增加OOS航天器驻车轨道半长轴和倾角的数量和合理选择,可以实现其减小。本文的目的是开发一种小偏心近地轨道低轨道OOS复合体轨道结构的优化综合和优化运行规划技术。求解该问题的方法有平均法、分支定界法和多目标优化法。所得结果的新颖性在于开发了一种低偏心近地轨道低轨道空间OOS复合体轨道结构优化综合和运行优化规划技术。该技术可用于近地小偏心低轨道空间OOS系统的前期规划设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ORBITAL STRUCTURE OPTIMIZATION TECHNIQUE OF THE LOW-ORBIT COMPLEX OF ON-ORBIT SERVICE
Most of the currently planned on-orbit servicing (OOS) missions involve the use of disposable OOS spacecraft. The use of disposable OOS spacecraft may be profitable in the near future. But it is not a reliable solution for OOS in the long term. As an alternative, a more useful concept is the use of reusable OOS complexes, which allow responding to scheduled and random requests from OOS clients. This concept can ensure the timeliness and efficiency of OOS implementation during planned services and random requests of OOS clients. However, despite the potential advantage of a reusable OOS, the design of its orbital structure and operational maintenance is much more complicated in comparison with the traditional concept of the organization of OOS. This is because when planning the response of reusable OOS complexes to requests, it is necessary to distribute OOS client service operations between space vehicles of the reusable OOS complex. Now the space industry is switching its attention to the area of low Earth orbits. This causes an increase in deployed and planned low-orbit satellite groups, the number of satellites in them, the difference in structural schemes of satellite groups, and the significant influence of the environment on orbital parameters. As you know, the orbital parameters of low orbits of space vehicles can differ significantly, and the difference between them can reach tens or even hundreds of degrees in the longitude of the ascending node. This leads to unacceptably high energy costs for modern OOS spacecraft for active rotation of the planes of their original orbits to the planes of the destination orbits. In some works, the possibility of reducing these energy costs due to the use of the difference in the speed of the nodal precession of the parking and destination orbits of the OOS spacecraft due to the non-centrality of the Earth’s gravitational field is considered. However, due to the long wait of the OOS spacecraft in the parking orbit, the flight time with the wait between the parking and destination orbits increases significantly. Its reduction can be achieved by increasing the number and rational selection of the semi-major axis and inclination of the parking orbits of the OOS spacecraft. The purpose of the article is to develop a technique for the optimal synthesis of the orbital structure and optimal operational planning of the low-orbit OOS complex in near-Earth orbits with a small eccentricity. Methods for solving the problem are the averaging method, the branch-and-bound method, and the multiobjective optimization method. The novelty of the obtained results lies in the development of a technique for optimal synthesis of the orbital structure and optimal operational planning of the low-orbit space OOS complex in near-Earth orbits with low eccentricity. The developed technique can be used in the previous planning and design of space OOS complexes in low near-Earth orbits with a small eccentricity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信