{"title":"具有最大界原理的半线性抛物方程的低正则积分器","authors":"Cao-Kha Doan, Thi-Thao-Phuong Hoang, Lili Ju, Katharina Schratz","doi":"10.1007/s10543-023-00946-2","DOIUrl":null,"url":null,"abstract":"This paper is concerned with conditionally structure-preserving, low regularity time integration methods for a class of semilinear parabolic equations of Allen–Cahn type. Important properties of such equations include maximum bound principle (MBP) and energy dissipation law; for the former, that means the absolute value of the solution is pointwisely bounded for all the time by some constant imposed by appropriate initial and boundary conditions. The model equation is first discretized in space by the central finite difference, then by iteratively using Duhamel’s formula, first- and second-order low regularity integrators (LRIs) are constructed for time discretization of the semi-discrete system. The proposed LRI schemes are proved to preserve the MBP and the energy stability in the discrete sense. Furthermore, their temporal error estimates are also successfully derived under a low regularity requirement that the exact solution of the semi-discrete problem is only assumed to be continuous in time. Numerical results show that the proposed LRI schemes are more accurate and have better convergence rates than classic exponential time differencing schemes, especially when the interfacial parameter approaches zero.","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"41 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low regularity integrators for semilinear parabolic equations with maximum bound principles\",\"authors\":\"Cao-Kha Doan, Thi-Thao-Phuong Hoang, Lili Ju, Katharina Schratz\",\"doi\":\"10.1007/s10543-023-00946-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with conditionally structure-preserving, low regularity time integration methods for a class of semilinear parabolic equations of Allen–Cahn type. Important properties of such equations include maximum bound principle (MBP) and energy dissipation law; for the former, that means the absolute value of the solution is pointwisely bounded for all the time by some constant imposed by appropriate initial and boundary conditions. The model equation is first discretized in space by the central finite difference, then by iteratively using Duhamel’s formula, first- and second-order low regularity integrators (LRIs) are constructed for time discretization of the semi-discrete system. The proposed LRI schemes are proved to preserve the MBP and the energy stability in the discrete sense. Furthermore, their temporal error estimates are also successfully derived under a low regularity requirement that the exact solution of the semi-discrete problem is only assumed to be continuous in time. Numerical results show that the proposed LRI schemes are more accurate and have better convergence rates than classic exponential time differencing schemes, especially when the interfacial parameter approaches zero.\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-023-00946-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10543-023-00946-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Low regularity integrators for semilinear parabolic equations with maximum bound principles
This paper is concerned with conditionally structure-preserving, low regularity time integration methods for a class of semilinear parabolic equations of Allen–Cahn type. Important properties of such equations include maximum bound principle (MBP) and energy dissipation law; for the former, that means the absolute value of the solution is pointwisely bounded for all the time by some constant imposed by appropriate initial and boundary conditions. The model equation is first discretized in space by the central finite difference, then by iteratively using Duhamel’s formula, first- and second-order low regularity integrators (LRIs) are constructed for time discretization of the semi-discrete system. The proposed LRI schemes are proved to preserve the MBP and the energy stability in the discrete sense. Furthermore, their temporal error estimates are also successfully derived under a low regularity requirement that the exact solution of the semi-discrete problem is only assumed to be continuous in time. Numerical results show that the proposed LRI schemes are more accurate and have better convergence rates than classic exponential time differencing schemes, especially when the interfacial parameter approaches zero.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.