稀疏图幂中半图阶的界

IF 0.7 4区 数学 Q2 MATHEMATICS
Marek Sokołowski
{"title":"稀疏图幂中半图阶的界","authors":"Marek Sokołowski","doi":"10.37236/11063","DOIUrl":null,"url":null,"abstract":"Half graphs and their variants, such as semi-ladders and co-matchings, are configurations that encode total orders in graphs. Works by Adler and Adler (Eur. J. Comb.; 2014) and Fabiański et al. (STACS; 2019) prove that in powers of sparse graphs, one cannot find arbitrarily large configurations of this kind. However, these proofs either are non-constructive, or provide only loose upper bounds on the orders of half graphs and semi-ladders.In this work we provide nearly tight asymptotic lower and upper bounds on the maximum order of half graphs, parameterized by the power, in the following classes of sparse graphs: planar graphs, graphs with bounded maximum degree, graphs with bounded pathwidth or treewidth, and graphs excluding a fixed clique as a minor.
 The most significant part of our work is the upper bound for planar graphs. Here, we employ techniques of structural graph theory to analyze semi-ladders in planar graphs via the notion of cages, which expose a topological structure in semi-ladders. As an essential building block of this proof, we also state and prove a new structural result, yielding a fully polynomial bound on the neighborhood complexity in the class of planar graphs.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"98 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on Half Graph Orders in Powers of Sparse Graphs\",\"authors\":\"Marek Sokołowski\",\"doi\":\"10.37236/11063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Half graphs and their variants, such as semi-ladders and co-matchings, are configurations that encode total orders in graphs. Works by Adler and Adler (Eur. J. Comb.; 2014) and Fabiański et al. (STACS; 2019) prove that in powers of sparse graphs, one cannot find arbitrarily large configurations of this kind. However, these proofs either are non-constructive, or provide only loose upper bounds on the orders of half graphs and semi-ladders.In this work we provide nearly tight asymptotic lower and upper bounds on the maximum order of half graphs, parameterized by the power, in the following classes of sparse graphs: planar graphs, graphs with bounded maximum degree, graphs with bounded pathwidth or treewidth, and graphs excluding a fixed clique as a minor.
 The most significant part of our work is the upper bound for planar graphs. Here, we employ techniques of structural graph theory to analyze semi-ladders in planar graphs via the notion of cages, which expose a topological structure in semi-ladders. As an essential building block of this proof, we also state and prove a new structural result, yielding a fully polynomial bound on the neighborhood complexity in the class of planar graphs.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11063\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

半图及其变体,如半阶梯和共匹配,是在图中编码总顺序的配置。阿德勒和阿德勒(欧洲)的作品。j .梳子。2014)和Fabiański等人(STACS;2019)证明了在稀疏图的幂次中,人们无法找到这种任意大的配置。然而,这些证明要么是非建设性的,要么只提供半图和半阶梯阶上的松散上界。在本文中,我们给出了用幂参数化的半图的最大阶的近紧渐近下界和上界,这些稀疏图包括:平面图、最大度有界的图、路径宽度或树宽度有界的图以及不包含固定团的图。 我们的工作中最重要的部分是平面图的上界。在这里,我们采用结构图论的技术,通过笼的概念来分析平面图中的半阶梯,这暴露了半阶梯中的拓扑结构。作为这一证明的重要组成部分,我们还陈述并证明了一个新的结构结果,给出了平面图类的邻域复杂度的一个完全多项式界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on Half Graph Orders in Powers of Sparse Graphs
Half graphs and their variants, such as semi-ladders and co-matchings, are configurations that encode total orders in graphs. Works by Adler and Adler (Eur. J. Comb.; 2014) and Fabiański et al. (STACS; 2019) prove that in powers of sparse graphs, one cannot find arbitrarily large configurations of this kind. However, these proofs either are non-constructive, or provide only loose upper bounds on the orders of half graphs and semi-ladders.In this work we provide nearly tight asymptotic lower and upper bounds on the maximum order of half graphs, parameterized by the power, in the following classes of sparse graphs: planar graphs, graphs with bounded maximum degree, graphs with bounded pathwidth or treewidth, and graphs excluding a fixed clique as a minor. The most significant part of our work is the upper bound for planar graphs. Here, we employ techniques of structural graph theory to analyze semi-ladders in planar graphs via the notion of cages, which expose a topological structure in semi-ladders. As an essential building block of this proof, we also state and prove a new structural result, yielding a fully polynomial bound on the neighborhood complexity in the class of planar graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信