Xuwen Zhu, Yana Melnykov, Angelina S. Kolomoytseva
{"title":"针对具有重尾和散点的倾斜数据组的污染变换矩阵混合建模","authors":"Xuwen Zhu, Yana Melnykov, Angelina S. Kolomoytseva","doi":"10.1007/s11634-023-00550-w","DOIUrl":null,"url":null,"abstract":"<div><p>Model-based clustering is a popular application of the rapidly developing area of finite mixture modeling. While there is ample work focusing on clustering multivariate data, an increasing number of advancements have been aiming at the expansion of existing theory to the matrix-variate framework. Matrix-variate Gaussian mixtures are most popular in this setting despite the potential misfit for skewed and heavy-tailed data. To overcome this lack of flexibility, a new contaminated transformation matrix mixture model is proposed. We illustrate its utility in a series of experiments on simulated data and apply to a real-life data set containing COVID-related information. The performance of the developed model is promising in all considered settings.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 1","pages":"85 - 101"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contamination transformation matrix mixture modeling for skewed data groups with heavy tails and scatter\",\"authors\":\"Xuwen Zhu, Yana Melnykov, Angelina S. Kolomoytseva\",\"doi\":\"10.1007/s11634-023-00550-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Model-based clustering is a popular application of the rapidly developing area of finite mixture modeling. While there is ample work focusing on clustering multivariate data, an increasing number of advancements have been aiming at the expansion of existing theory to the matrix-variate framework. Matrix-variate Gaussian mixtures are most popular in this setting despite the potential misfit for skewed and heavy-tailed data. To overcome this lack of flexibility, a new contaminated transformation matrix mixture model is proposed. We illustrate its utility in a series of experiments on simulated data and apply to a real-life data set containing COVID-related information. The performance of the developed model is promising in all considered settings.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"18 1\",\"pages\":\"85 - 101\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-023-00550-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-023-00550-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Contamination transformation matrix mixture modeling for skewed data groups with heavy tails and scatter
Model-based clustering is a popular application of the rapidly developing area of finite mixture modeling. While there is ample work focusing on clustering multivariate data, an increasing number of advancements have been aiming at the expansion of existing theory to the matrix-variate framework. Matrix-variate Gaussian mixtures are most popular in this setting despite the potential misfit for skewed and heavy-tailed data. To overcome this lack of flexibility, a new contaminated transformation matrix mixture model is proposed. We illustrate its utility in a series of experiments on simulated data and apply to a real-life data set containing COVID-related information. The performance of the developed model is promising in all considered settings.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.