Yunsong Zhao, Na Li, Li Wang, Junyang He, Weihong Liu, Min Song
{"title":"含ru镍基高温合金γ′晶格中高温蠕变诱导的占位演化","authors":"Yunsong Zhao, Na Li, Li Wang, Junyang He, Weihong Liu, Min Song","doi":"10.1080/21663831.2023.2254910","DOIUrl":null,"url":null,"abstract":"By using state-of-the-art characterisation techniques including atom probe tomography and atomic resolved elemental mapping, we successfully probed the site occupation evolution associated with composition change in γ′, during 1100°C creep of a fourth generation Ru-bearing Ni-based superalloy. It is quantified that, W and Ru maintain unchanged site preference after creep rupture, while interestingly, the rest elements especially Co, Ta and Re show a weakened preference at both α- and β-sites in the γ′ lattice. This indicates the overall reduced γ′ ordering degree and thus the possible decrease in planar fault energies, which further facilitates dislocation shearing in γ′.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"1 1","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-temperature creep-induced site occupation evolution in the γ′ lattice in a Ru-bearing Ni-based superalloy\",\"authors\":\"Yunsong Zhao, Na Li, Li Wang, Junyang He, Weihong Liu, Min Song\",\"doi\":\"10.1080/21663831.2023.2254910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using state-of-the-art characterisation techniques including atom probe tomography and atomic resolved elemental mapping, we successfully probed the site occupation evolution associated with composition change in γ′, during 1100°C creep of a fourth generation Ru-bearing Ni-based superalloy. It is quantified that, W and Ru maintain unchanged site preference after creep rupture, while interestingly, the rest elements especially Co, Ta and Re show a weakened preference at both α- and β-sites in the γ′ lattice. This indicates the overall reduced γ′ ordering degree and thus the possible decrease in planar fault energies, which further facilitates dislocation shearing in γ′.\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2023.2254910\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2254910","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-temperature creep-induced site occupation evolution in the γ′ lattice in a Ru-bearing Ni-based superalloy
By using state-of-the-art characterisation techniques including atom probe tomography and atomic resolved elemental mapping, we successfully probed the site occupation evolution associated with composition change in γ′, during 1100°C creep of a fourth generation Ru-bearing Ni-based superalloy. It is quantified that, W and Ru maintain unchanged site preference after creep rupture, while interestingly, the rest elements especially Co, Ta and Re show a weakened preference at both α- and β-sites in the γ′ lattice. This indicates the overall reduced γ′ ordering degree and thus the possible decrease in planar fault energies, which further facilitates dislocation shearing in γ′.
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.