对三个固有传递置换群和相关的2-传递群进行排序

Q4 Mathematics
Anton A. Baykalov, Alice Devillers, Cheryl E. Praeger
{"title":"对三个固有传递置换群和相关的2-传递群进行排序","authors":"Anton A. Baykalov, Alice Devillers, Cheryl E. Praeger","doi":"10.2140/iig.2023.20.135","DOIUrl":null,"url":null,"abstract":"The sets of primitive, quasiprimitive, and innately transitive permutation groups may each be regarded as the building blocks of finite transitive permutation groups, and are analogues of composition factors for abstract finite groups. This paper extends classifications of finite primitive and quasiprimitive groups of rank at most $3$ to a classification for the finite innately transitive groups. The new examples comprise three infinite families and three sporadic examples. A necessary step in this classification was the determination of certain configurations in finite almost simple $2$-transitive groups called special pairs.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rank three innately transitive permutation groups and related 2-transitive groups\",\"authors\":\"Anton A. Baykalov, Alice Devillers, Cheryl E. Praeger\",\"doi\":\"10.2140/iig.2023.20.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sets of primitive, quasiprimitive, and innately transitive permutation groups may each be regarded as the building blocks of finite transitive permutation groups, and are analogues of composition factors for abstract finite groups. This paper extends classifications of finite primitive and quasiprimitive groups of rank at most $3$ to a classification for the finite innately transitive groups. The new examples comprise three infinite families and three sporadic examples. A necessary step in this classification was the determination of certain configurations in finite almost simple $2$-transitive groups called special pairs.\",\"PeriodicalId\":36589,\"journal\":{\"name\":\"Innovations in Incidence Geometry\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/iig.2023.20.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2023.20.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rank three innately transitive permutation groups and related 2-transitive groups
The sets of primitive, quasiprimitive, and innately transitive permutation groups may each be regarded as the building blocks of finite transitive permutation groups, and are analogues of composition factors for abstract finite groups. This paper extends classifications of finite primitive and quasiprimitive groups of rank at most $3$ to a classification for the finite innately transitive groups. The new examples comprise three infinite families and three sporadic examples. A necessary step in this classification was the determination of certain configurations in finite almost simple $2$-transitive groups called special pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Innovations in Incidence Geometry
Innovations in Incidence Geometry Mathematics-Geometry and Topology
CiteScore
0.40
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信