降水预报:从地球物理方面到机器学习应用

IF 3.3 Q2 ENVIRONMENTAL SCIENCES
Ewerton Cristhian Lima de Oliveira, Antonio Vasconcelos Nogueira Neto, Ana Paula Paes dos Santos, Claudia Priscila Wanzeler da Costa, Julio Cezar Gonçalves de Freitas, Pedro Walfir Martins Souza-Filho, Rafael de Lima Rocha, Ronnie Cley Alves, Vânia dos Santos Franco, Eduardo Costa de Carvalho, Renata Gonçalves Tedeschi
{"title":"降水预报:从地球物理方面到机器学习应用","authors":"Ewerton Cristhian Lima de Oliveira, Antonio Vasconcelos Nogueira Neto, Ana Paula Paes dos Santos, Claudia Priscila Wanzeler da Costa, Julio Cezar Gonçalves de Freitas, Pedro Walfir Martins Souza-Filho, Rafael de Lima Rocha, Ronnie Cley Alves, Vânia dos Santos Franco, Eduardo Costa de Carvalho, Renata Gonçalves Tedeschi","doi":"10.3389/fclim.2023.1250201","DOIUrl":null,"url":null,"abstract":"Intense precipitation events pose a significant threat to human life. Mathematical and computational models have been developed to simulate atmospheric dynamics to predict and understand these climates and weather events. However, recent advancements in artificial intelligence (AI) algorithms, particularly in machine learning (ML) techniques, coupled with increasing computer processing power and meteorological data availability, have enabled the development of more cost-effective and robust computational models that are capable of predicting precipitation types and aiding decision-making to mitigate damage. In this paper, we provide a comprehensive overview of the state-of-the-art in predicting precipitation events, addressing issues and foundations, physical origins of rainfall, potential use of AI as a predictive tool for forecasting, and computational challenges in this area of research. Through this review, we aim to contribute to a deeper understanding of precipitation formation and forecasting aided by ML algorithms.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":"68 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precipitation forecasting: from geophysical aspects to machine learning applications\",\"authors\":\"Ewerton Cristhian Lima de Oliveira, Antonio Vasconcelos Nogueira Neto, Ana Paula Paes dos Santos, Claudia Priscila Wanzeler da Costa, Julio Cezar Gonçalves de Freitas, Pedro Walfir Martins Souza-Filho, Rafael de Lima Rocha, Ronnie Cley Alves, Vânia dos Santos Franco, Eduardo Costa de Carvalho, Renata Gonçalves Tedeschi\",\"doi\":\"10.3389/fclim.2023.1250201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intense precipitation events pose a significant threat to human life. Mathematical and computational models have been developed to simulate atmospheric dynamics to predict and understand these climates and weather events. However, recent advancements in artificial intelligence (AI) algorithms, particularly in machine learning (ML) techniques, coupled with increasing computer processing power and meteorological data availability, have enabled the development of more cost-effective and robust computational models that are capable of predicting precipitation types and aiding decision-making to mitigate damage. In this paper, we provide a comprehensive overview of the state-of-the-art in predicting precipitation events, addressing issues and foundations, physical origins of rainfall, potential use of AI as a predictive tool for forecasting, and computational challenges in this area of research. Through this review, we aim to contribute to a deeper understanding of precipitation formation and forecasting aided by ML algorithms.\",\"PeriodicalId\":33632,\"journal\":{\"name\":\"Frontiers in Climate\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fclim.2023.1250201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fclim.2023.1250201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

强降水事件对人类生命构成重大威胁。数学和计算模型已被开发出来模拟大气动力学,以预测和了解这些气候和天气事件。然而,人工智能(AI)算法,特别是机器学习(ML)技术的最新进展,加上计算机处理能力和气象数据可用性的提高,使得开发更具成本效益和强大的计算模型成为可能,这些模型能够预测降水类型并帮助决策以减轻损害。在本文中,我们全面概述了预测降水事件、解决问题和基础、降雨的物理起源、人工智能作为预测工具的潜在用途,以及该研究领域的计算挑战。通过这篇综述,我们的目标是在ML算法的帮助下,对降水的形成和预测有更深的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precipitation forecasting: from geophysical aspects to machine learning applications
Intense precipitation events pose a significant threat to human life. Mathematical and computational models have been developed to simulate atmospheric dynamics to predict and understand these climates and weather events. However, recent advancements in artificial intelligence (AI) algorithms, particularly in machine learning (ML) techniques, coupled with increasing computer processing power and meteorological data availability, have enabled the development of more cost-effective and robust computational models that are capable of predicting precipitation types and aiding decision-making to mitigate damage. In this paper, we provide a comprehensive overview of the state-of-the-art in predicting precipitation events, addressing issues and foundations, physical origins of rainfall, potential use of AI as a predictive tool for forecasting, and computational challenges in this area of research. Through this review, we aim to contribute to a deeper understanding of precipitation formation and forecasting aided by ML algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Climate
Frontiers in Climate Environmental Science-Environmental Science (miscellaneous)
CiteScore
4.50
自引率
0.00%
发文量
233
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信