一种简单、经济、可靠的间接测定现场容量的方法

IF 3.1 Q2 WATER RESOURCES
Cansu Almaz, Markéta Miháliková, Kamila Báťková, Jan Vopravil, Svatopluk Matula, Tomáš Khel, Recep Serdar Kara
{"title":"一种简单、经济、可靠的间接测定现场容量的方法","authors":"Cansu Almaz, Markéta Miháliková, Kamila Báťková, Jan Vopravil, Svatopluk Matula, Tomáš Khel, Recep Serdar Kara","doi":"10.3390/hydrology10100202","DOIUrl":null,"url":null,"abstract":"This study introduces a simple and cost-effective method for the indirect determination of field capacity (FC) in soil, a critical parameter for soil hydrology and environmental modeling. The relationships between FC and soil moisture constants, specifically maximum capillary water capacity (MCWC) and retention water capacity (RWC), were established using undisturbed soil core samples analyzed via the pressure plate method and the “filter paper draining method”. The aim was to reduce the time and costs associated with traditional FC measurement methods, as well as allowing for the use of legacy databases containing MCWC and RWC values. The results revealed the substantial potential of the “filter paper draining method” as a promising approach for indirect FC determination. FC determined as soil water content at −33 kPa can be effectively approximated by the equation FC33 = 1.0802 RWC − 0.0688 (with RMSE = 0.045 cm3/cm3 and R = 0.953). FC determined as soil water content at −5 or −10 kPa can be effectively approximated by both equations FC5 = 1.0146 MCWC − 0.0163 (with RMSE = 0.027 cm3/cm3 and R = 0.961) and FC10 = 1.0152 MCWC − 0.0275 (with RMSE = 0.033 cm3/cm3 and R = 0.958), respectively. Historical pedotransfer functions by Brežný and Váša relating FC to fine particle size fraction were also evaluated for practical application, and according to the results, they cannot be recommended for use.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"56 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and Cost-Effective Method for Reliable Indirect Determination of Field Capacity\",\"authors\":\"Cansu Almaz, Markéta Miháliková, Kamila Báťková, Jan Vopravil, Svatopluk Matula, Tomáš Khel, Recep Serdar Kara\",\"doi\":\"10.3390/hydrology10100202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a simple and cost-effective method for the indirect determination of field capacity (FC) in soil, a critical parameter for soil hydrology and environmental modeling. The relationships between FC and soil moisture constants, specifically maximum capillary water capacity (MCWC) and retention water capacity (RWC), were established using undisturbed soil core samples analyzed via the pressure plate method and the “filter paper draining method”. The aim was to reduce the time and costs associated with traditional FC measurement methods, as well as allowing for the use of legacy databases containing MCWC and RWC values. The results revealed the substantial potential of the “filter paper draining method” as a promising approach for indirect FC determination. FC determined as soil water content at −33 kPa can be effectively approximated by the equation FC33 = 1.0802 RWC − 0.0688 (with RMSE = 0.045 cm3/cm3 and R = 0.953). FC determined as soil water content at −5 or −10 kPa can be effectively approximated by both equations FC5 = 1.0146 MCWC − 0.0163 (with RMSE = 0.027 cm3/cm3 and R = 0.961) and FC10 = 1.0152 MCWC − 0.0275 (with RMSE = 0.033 cm3/cm3 and R = 0.958), respectively. Historical pedotransfer functions by Brežný and Váša relating FC to fine particle size fraction were also evaluated for practical application, and according to the results, they cannot be recommended for use.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10100202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10100202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种简单而经济的方法来间接测定土壤的田间容量(FC),这是土壤水文和环境建模的一个关键参数。通过压力板法和“滤纸排水法”分析原状土芯样品,建立了FC与土壤水分常数,特别是最大毛管水容量(MCWC)和持水量(RWC)之间的关系。其目的是减少与传统FC测量方法相关的时间和成本,并允许使用包含MCWC和RWC值的遗留数据库。结果表明,“滤纸排水法”作为一种有前途的间接测定FC的方法具有很大的潜力。- 33 kPa时土壤含水量FC可有效地近似为:FC33 = 1.0802 RWC - 0.0688 (RMSE = 0.045 cm3/cm3, R = 0.953)。- 5或- 10 kPa土壤含水量测定的FC可以分别用方程FC5 = 1.0146 MCWC - 0.0163 (RMSE = 0.027 cm3/cm3, R = 0.961)和FC10 = 1.0152 MCWC - 0.0275 (RMSE = 0.033 cm3/cm3, R = 0.958)有效地近似。通过Brežný和Váša对FC与细粒度分数的历史土壤传递函数也进行了实际应用评估,根据结果,它们不能被推荐使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple and Cost-Effective Method for Reliable Indirect Determination of Field Capacity
This study introduces a simple and cost-effective method for the indirect determination of field capacity (FC) in soil, a critical parameter for soil hydrology and environmental modeling. The relationships between FC and soil moisture constants, specifically maximum capillary water capacity (MCWC) and retention water capacity (RWC), were established using undisturbed soil core samples analyzed via the pressure plate method and the “filter paper draining method”. The aim was to reduce the time and costs associated with traditional FC measurement methods, as well as allowing for the use of legacy databases containing MCWC and RWC values. The results revealed the substantial potential of the “filter paper draining method” as a promising approach for indirect FC determination. FC determined as soil water content at −33 kPa can be effectively approximated by the equation FC33 = 1.0802 RWC − 0.0688 (with RMSE = 0.045 cm3/cm3 and R = 0.953). FC determined as soil water content at −5 or −10 kPa can be effectively approximated by both equations FC5 = 1.0146 MCWC − 0.0163 (with RMSE = 0.027 cm3/cm3 and R = 0.961) and FC10 = 1.0152 MCWC − 0.0275 (with RMSE = 0.033 cm3/cm3 and R = 0.958), respectively. Historical pedotransfer functions by Brežný and Váša relating FC to fine particle size fraction were also evaluated for practical application, and according to the results, they cannot be recommended for use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology
Hydrology Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍: Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信