Joseph Nzabahimana, Songtao Guo, Yaya Wang, Xianluo Hu
{"title":"高性能长寿命锂离子电池用铋/碳复合阳极的简易合成","authors":"Joseph Nzabahimana, Songtao Guo, Yaya Wang, Xianluo Hu","doi":"10.1002/bte2.20230027","DOIUrl":null,"url":null,"abstract":"<p>Alloy-type antimony (Sb) is considered as an attractive candidate anode for high-energy lithium-ion batteries (LIBs) because of its high theoretical specific capacity and volumetric capacity. However, Sb suffers from enormous volume variation during cycling, which causes electrode cracking and pulverization, and hence the fast capacity decay and poor cyclability, limiting its practical applications as a LIB anode. Herein, we report a facile, scalable, low-cost, and efficient route to successfully fabricate BiSb/C composites via a two-step high-energy mechanical milling (HEMM) process. The as-prepared BiSb/C composites consist of nanosized BiSb totally embedded in a conductive carbon matrix. As LIB anodes, BiSb/C-73 (with 30 wt% carbon) electrodes exhibit excellent Li-storage properties in terms of stable high reversible capacities, long-cycle life, and high-rate performance. Reversible capacities of ∼583, ∼466, ∼433, and ∼425 mAh g<sup>−1</sup> at a current density of 500 mA g<sup>−1</sup> after 100, 300, 500, and 1000 cycles, respectively, were achieved. In addition, a high capacity of ∼380 mAh g<sup>−1</sup> can still be retained at a high rate of 5 A g<sup>−1</sup>. Such outstanding cycling stability and rate capability could be mainly attributed to the synergistic effects between the ability of nanosized BiSb particles to withstand electrode fracture during Li insertion/extraction and the buffering effect of the carbon matrix. The as-prepared BiSb/C composites are based on commercially available and low-cost Bi, Sb, and graphite materials. Interestingly, HEMM is a more convenient, efficient, scalable, green, and mass-production route, making as-prepared materials attractive for high-energy LIBs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"2 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230027","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of BiSb/C composite anodes for high-performance and long-life lithium-ion batteries\",\"authors\":\"Joseph Nzabahimana, Songtao Guo, Yaya Wang, Xianluo Hu\",\"doi\":\"10.1002/bte2.20230027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Alloy-type antimony (Sb) is considered as an attractive candidate anode for high-energy lithium-ion batteries (LIBs) because of its high theoretical specific capacity and volumetric capacity. However, Sb suffers from enormous volume variation during cycling, which causes electrode cracking and pulverization, and hence the fast capacity decay and poor cyclability, limiting its practical applications as a LIB anode. Herein, we report a facile, scalable, low-cost, and efficient route to successfully fabricate BiSb/C composites via a two-step high-energy mechanical milling (HEMM) process. The as-prepared BiSb/C composites consist of nanosized BiSb totally embedded in a conductive carbon matrix. As LIB anodes, BiSb/C-73 (with 30 wt% carbon) electrodes exhibit excellent Li-storage properties in terms of stable high reversible capacities, long-cycle life, and high-rate performance. Reversible capacities of ∼583, ∼466, ∼433, and ∼425 mAh g<sup>−1</sup> at a current density of 500 mA g<sup>−1</sup> after 100, 300, 500, and 1000 cycles, respectively, were achieved. In addition, a high capacity of ∼380 mAh g<sup>−1</sup> can still be retained at a high rate of 5 A g<sup>−1</sup>. Such outstanding cycling stability and rate capability could be mainly attributed to the synergistic effects between the ability of nanosized BiSb particles to withstand electrode fracture during Li insertion/extraction and the buffering effect of the carbon matrix. The as-prepared BiSb/C composites are based on commercially available and low-cost Bi, Sb, and graphite materials. Interestingly, HEMM is a more convenient, efficient, scalable, green, and mass-production route, making as-prepared materials attractive for high-energy LIBs.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"2 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要合金型锑(Sb)由于具有较高的理论比容量和体积容量,被认为是高能锂离子电池(LIBs)极具吸引力的候选阳极。然而,Sb在循环过程中体积变化较大,导致电极开裂和粉末化,因此容量衰减快,可循环性差,限制了其作为锂离子电池阳极的实际应用。在此,我们报告了一种简单、可扩展、低成本和高效的方法,通过两步高能机械铣削(HEMM)工艺成功制造了BiSb/C复合材料。制备的铋/碳复合材料由纳米级铋完全嵌入导电碳基体组成。作为锂离子电池阳极,BiSb/C‐73(含碳30%)电极在稳定的高可逆容量、长循环寿命和高倍率性能方面表现出优异的锂存储性能。在500ma g - 1的电流密度下,经过100、300、500和1000次循环,分别获得了~ 583、~ 466、~ 433和~ 425 mAh g - 1的可逆容量。此外,在5 a g−1的高倍率下,仍然可以保持~ 380 mAh g−1的高容量。这种优异的循环稳定性和速率能力主要归因于纳米级铋颗粒在Li插入/提取过程中承受电极断裂的能力与碳基体的缓冲作用之间的协同作用。所制备的铋/碳复合材料是基于市售的低成本铋、锑和石墨材料。有趣的是,HEMM是一种更方便、高效、可扩展、绿色和大规模生产的路线,使得原位制备的材料对高能lib具有吸引力。
Facile synthesis of BiSb/C composite anodes for high-performance and long-life lithium-ion batteries
Alloy-type antimony (Sb) is considered as an attractive candidate anode for high-energy lithium-ion batteries (LIBs) because of its high theoretical specific capacity and volumetric capacity. However, Sb suffers from enormous volume variation during cycling, which causes electrode cracking and pulverization, and hence the fast capacity decay and poor cyclability, limiting its practical applications as a LIB anode. Herein, we report a facile, scalable, low-cost, and efficient route to successfully fabricate BiSb/C composites via a two-step high-energy mechanical milling (HEMM) process. The as-prepared BiSb/C composites consist of nanosized BiSb totally embedded in a conductive carbon matrix. As LIB anodes, BiSb/C-73 (with 30 wt% carbon) electrodes exhibit excellent Li-storage properties in terms of stable high reversible capacities, long-cycle life, and high-rate performance. Reversible capacities of ∼583, ∼466, ∼433, and ∼425 mAh g−1 at a current density of 500 mA g−1 after 100, 300, 500, and 1000 cycles, respectively, were achieved. In addition, a high capacity of ∼380 mAh g−1 can still be retained at a high rate of 5 A g−1. Such outstanding cycling stability and rate capability could be mainly attributed to the synergistic effects between the ability of nanosized BiSb particles to withstand electrode fracture during Li insertion/extraction and the buffering effect of the carbon matrix. The as-prepared BiSb/C composites are based on commercially available and low-cost Bi, Sb, and graphite materials. Interestingly, HEMM is a more convenient, efficient, scalable, green, and mass-production route, making as-prepared materials attractive for high-energy LIBs.