Moonyong Kim, Storm Drury, Pietro Altermatt, Li Wang, Yuchao Zhang, Catherine Chan, Pablo Dias, Brett Hallam
{"title":"确定到2050年为实现净零排放而降低集中式光伏部署排放强度的方法:30兆瓦光伏电站的生命周期评估案例研究","authors":"Moonyong Kim, Storm Drury, Pietro Altermatt, Li Wang, Yuchao Zhang, Catherine Chan, Pablo Dias, Brett Hallam","doi":"10.1002/pip.3747","DOIUrl":null,"url":null,"abstract":"<p>Photovoltaics (PV) is one of the most effective and necessary energy sources to mitigate climate change. The broad electrification scenario projects the PV market to grow from 1 TW in 2022 to over 63 TW in 2050. While increasing PV production will significantly reduce the emission intensity of electricity generation, it is still important to minimise the overall environmental impact of such a large industry. In this study, we investigated the intensity of greenhouse gas (GHG) emissions of a 30 MW PV plant using a life cycle assessment (LCA). Based on the LCA, we propose a roadmap to reduce emissions from PV manufacturing and deployment. Decarbonising significant factors like aluminium and concrete production or the electricity demand to produce PV modules can greatly reduce the carbon budget related to PV production. Our study shows that the global warming potential (GWP) per kWh can be reduced from 11.2 to 1.7 g CO<sub>2</sub>-eq/kWh over the lifetime of the PV system (85% reduction). Using the aspects to decarbonise PV production, the roadmap is demonstrated. The cumulative GWP to reach 63 TW is initially estimated to be 44 Gt CO<sub>2</sub>-eq. Our decarbonising roadmap demonstrated that such significance can be reduced by over 37 Gt CO<sub>2</sub>-eq, equivalent to a whole year emission in year 2022.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 12","pages":"1493-1502"},"PeriodicalIF":8.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3747","citationCount":"1","resultStr":"{\"title\":\"Identifying methods to reduce emission intensity of centralised Photovoltaic deployment for net zero by 2050: Life cycle assessment case study of a 30 MW PV plant\",\"authors\":\"Moonyong Kim, Storm Drury, Pietro Altermatt, Li Wang, Yuchao Zhang, Catherine Chan, Pablo Dias, Brett Hallam\",\"doi\":\"10.1002/pip.3747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photovoltaics (PV) is one of the most effective and necessary energy sources to mitigate climate change. The broad electrification scenario projects the PV market to grow from 1 TW in 2022 to over 63 TW in 2050. While increasing PV production will significantly reduce the emission intensity of electricity generation, it is still important to minimise the overall environmental impact of such a large industry. In this study, we investigated the intensity of greenhouse gas (GHG) emissions of a 30 MW PV plant using a life cycle assessment (LCA). Based on the LCA, we propose a roadmap to reduce emissions from PV manufacturing and deployment. Decarbonising significant factors like aluminium and concrete production or the electricity demand to produce PV modules can greatly reduce the carbon budget related to PV production. Our study shows that the global warming potential (GWP) per kWh can be reduced from 11.2 to 1.7 g CO<sub>2</sub>-eq/kWh over the lifetime of the PV system (85% reduction). Using the aspects to decarbonise PV production, the roadmap is demonstrated. The cumulative GWP to reach 63 TW is initially estimated to be 44 Gt CO<sub>2</sub>-eq. Our decarbonising roadmap demonstrated that such significance can be reduced by over 37 Gt CO<sub>2</sub>-eq, equivalent to a whole year emission in year 2022.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"31 12\",\"pages\":\"1493-1502\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3747\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3747\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3747","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Identifying methods to reduce emission intensity of centralised Photovoltaic deployment for net zero by 2050: Life cycle assessment case study of a 30 MW PV plant
Photovoltaics (PV) is one of the most effective and necessary energy sources to mitigate climate change. The broad electrification scenario projects the PV market to grow from 1 TW in 2022 to over 63 TW in 2050. While increasing PV production will significantly reduce the emission intensity of electricity generation, it is still important to minimise the overall environmental impact of such a large industry. In this study, we investigated the intensity of greenhouse gas (GHG) emissions of a 30 MW PV plant using a life cycle assessment (LCA). Based on the LCA, we propose a roadmap to reduce emissions from PV manufacturing and deployment. Decarbonising significant factors like aluminium and concrete production or the electricity demand to produce PV modules can greatly reduce the carbon budget related to PV production. Our study shows that the global warming potential (GWP) per kWh can be reduced from 11.2 to 1.7 g CO2-eq/kWh over the lifetime of the PV system (85% reduction). Using the aspects to decarbonise PV production, the roadmap is demonstrated. The cumulative GWP to reach 63 TW is initially estimated to be 44 Gt CO2-eq. Our decarbonising roadmap demonstrated that such significance can be reduced by over 37 Gt CO2-eq, equivalent to a whole year emission in year 2022.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.