Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Philip Lazos, Diogo Poças
{"title":"论首价拍卖中均衡计算的复杂性","authors":"Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Philip Lazos, Diogo Poças","doi":"10.1137/21m1435823","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing a (pure) Bayes-Nash equilibrium in the first-price auction with continuous value distributions and discrete bidding space. We prove that when bidders have independent subjective prior beliefs about the value distributions of the other bidders, computing an $\\varepsilon$-equilibrium of the auction is PPAD-complete, and computing an exact equilibrium is FIXP-complete. We also provide an efficient algorithm for solving a special case of the problem, for a fixed number of bidders and available bids.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"88 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Complexity of Equilibrium Computation in First-Price Auctions\",\"authors\":\"Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Philip Lazos, Diogo Poças\",\"doi\":\"10.1137/21m1435823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing a (pure) Bayes-Nash equilibrium in the first-price auction with continuous value distributions and discrete bidding space. We prove that when bidders have independent subjective prior beliefs about the value distributions of the other bidders, computing an $\\\\varepsilon$-equilibrium of the auction is PPAD-complete, and computing an exact equilibrium is FIXP-complete. We also provide an efficient algorithm for solving a special case of the problem, for a fixed number of bidders and available bids.\",\"PeriodicalId\":49532,\"journal\":{\"name\":\"SIAM Journal on Computing\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1435823\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1435823","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
On the Complexity of Equilibrium Computation in First-Price Auctions
We consider the problem of computing a (pure) Bayes-Nash equilibrium in the first-price auction with continuous value distributions and discrete bidding space. We prove that when bidders have independent subjective prior beliefs about the value distributions of the other bidders, computing an $\varepsilon$-equilibrium of the auction is PPAD-complete, and computing an exact equilibrium is FIXP-complete. We also provide an efficient algorithm for solving a special case of the problem, for a fixed number of bidders and available bids.
期刊介绍:
The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.