Fariba Farrokh, Abolfazl Vahedi, Hossein Torkaman, Mahdi Banejad, Vahid Zamani Faradonbeh
{"title":"双定子轴向磁场磁通开关永磁电机的二维混合分析电磁模型","authors":"Fariba Farrokh, Abolfazl Vahedi, Hossein Torkaman, Mahdi Banejad, Vahid Zamani Faradonbeh","doi":"10.1049/elp2.12385","DOIUrl":null,"url":null,"abstract":"<p>The two-dimensional (2D) analytical model for the calculation of the components of the flux density distribution in the air gap in a dual-stator axial-field flux-switching permanent magnet (PM) motor (DSAFFSPM) is presented. The novelties of this study are deriving a 2D hybrid analytical model and replacing the rotor teeth with some surface currents for the calculation of air-gap magnetic flux density for the first time in the DSAFFSPM motor. The 2D analytical model for DSAFFSPMs is more challenging due to the doubly salient structure and inner PM of the stator. 1D analytical interior PMs are first transferred to the bore of the stator body using the magnetic equivalent circuit model (MEC). Next, the effects of the rotor teeth are taken into consideration by injecting virtual surface currents for 2D analytical model. Applying boundary conditions and solving the Laplace/Poisson equations, the vertical and tangential flux components of the flux density distribution in the air-gap DSAFFSPM motor are computed. The verification of the proposed method and the obtained results are validated by the 3D finite element method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12385","citationCount":"0","resultStr":"{\"title\":\"A 2D hybrid analytical electromagnetic model of the dual-stator axial-field flux-switching permanent magnet motor\",\"authors\":\"Fariba Farrokh, Abolfazl Vahedi, Hossein Torkaman, Mahdi Banejad, Vahid Zamani Faradonbeh\",\"doi\":\"10.1049/elp2.12385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The two-dimensional (2D) analytical model for the calculation of the components of the flux density distribution in the air gap in a dual-stator axial-field flux-switching permanent magnet (PM) motor (DSAFFSPM) is presented. The novelties of this study are deriving a 2D hybrid analytical model and replacing the rotor teeth with some surface currents for the calculation of air-gap magnetic flux density for the first time in the DSAFFSPM motor. The 2D analytical model for DSAFFSPMs is more challenging due to the doubly salient structure and inner PM of the stator. 1D analytical interior PMs are first transferred to the bore of the stator body using the magnetic equivalent circuit model (MEC). Next, the effects of the rotor teeth are taken into consideration by injecting virtual surface currents for 2D analytical model. Applying boundary conditions and solving the Laplace/Poisson equations, the vertical and tangential flux components of the flux density distribution in the air-gap DSAFFSPM motor are computed. The verification of the proposed method and the obtained results are validated by the 3D finite element method.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12385\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12385\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12385","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A 2D hybrid analytical electromagnetic model of the dual-stator axial-field flux-switching permanent magnet motor
The two-dimensional (2D) analytical model for the calculation of the components of the flux density distribution in the air gap in a dual-stator axial-field flux-switching permanent magnet (PM) motor (DSAFFSPM) is presented. The novelties of this study are deriving a 2D hybrid analytical model and replacing the rotor teeth with some surface currents for the calculation of air-gap magnetic flux density for the first time in the DSAFFSPM motor. The 2D analytical model for DSAFFSPMs is more challenging due to the doubly salient structure and inner PM of the stator. 1D analytical interior PMs are first transferred to the bore of the stator body using the magnetic equivalent circuit model (MEC). Next, the effects of the rotor teeth are taken into consideration by injecting virtual surface currents for 2D analytical model. Applying boundary conditions and solving the Laplace/Poisson equations, the vertical and tangential flux components of the flux density distribution in the air-gap DSAFFSPM motor are computed. The verification of the proposed method and the obtained results are validated by the 3D finite element method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.