三维半对称几乎α-余辛流形

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-11-05 DOI:10.3390/sym15112022
Sermin Öztürk, Hakan Öztürk
{"title":"三维半对称几乎α-余辛流形","authors":"Sermin Öztürk, Hakan Öztürk","doi":"10.3390/sym15112022","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to study semi-symmetric almost -cosymplectic three-manifolds. We present basic formulas for almost -cosymplectic manifolds. Using curvature properties, we obtain some necessary and sufficient conditions on semi-symmetric almost -cosymplectic three-manifolds. We obtain the main results under an additional condition. The paper concludes with two illustrative examples.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"38 4","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Semi-Symmetric Almost α-Cosymplectic Manifolds\",\"authors\":\"Sermin Öztürk, Hakan Öztürk\",\"doi\":\"10.3390/sym15112022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to study semi-symmetric almost -cosymplectic three-manifolds. We present basic formulas for almost -cosymplectic manifolds. Using curvature properties, we obtain some necessary and sufficient conditions on semi-symmetric almost -cosymplectic three-manifolds. We obtain the main results under an additional condition. The paper concludes with two illustrative examples.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"38 4\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15112022\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15112022","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究半对称几乎-余辛三流形。给出了几乎-余辛流形的基本公式。利用曲率性质,得到了半对称几乎-余辛三流形的几个充分必要条件。我们在附加条件下得到了主要结果。本文最后以两个实例作结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-Dimensional Semi-Symmetric Almost α-Cosymplectic Manifolds
The main objective of this paper is to study semi-symmetric almost -cosymplectic three-manifolds. We present basic formulas for almost -cosymplectic manifolds. Using curvature properties, we obtain some necessary and sufficient conditions on semi-symmetric almost -cosymplectic three-manifolds. We obtain the main results under an additional condition. The paper concludes with two illustrative examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信