{"title":"采用dft导向设计一种更高效的氧化还原-中性有机催化mitsunobu反应催化剂","authors":"Dingguo Song , Changjun Zhang , Yuqi Cheng , Linlin Chen, Jie Lin, Changdi Zheng, Ting Liu, Yuxin Ding, Fei Ling, Weihui Zhong","doi":"10.1016/j.gresc.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>The study of a Mitsunobu reaction is an important topic. Denton and co-workers first reported a novel (2-hydroxybenzyl)diphenylphosphine oxide for realizing the catalytic Mitsunobu reaction <em>via</em> a five-membered phosphonium species. However, it is still worth investigating how to improve catalysts with higher efficiency. Guided by computational and experimental studies, we designed a new type of biphenyl-based phosphine oxide that would form a six-membered phosphonium species as a key intermediate to trigger the catalytic Mitsunobu reaction with a lower barrier of the rate-determining step (30.3 kcal/mol). DFT calculations revealed that only trans dehydration was participated in our catalytic progress and a strong <em>π</em>-<em>π</em> interaction and small spatial constraint of <strong>TS-V</strong> were crucial for high behavior. This readily accessible, highly stable, easily recyclable and efficient catalyst would boost the catalytic Mitsunobu reaction.</div></div>","PeriodicalId":12794,"journal":{"name":"Green Synthesis and Catalysis","volume":"5 4","pages":"Pages 290-296"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a more efficient catalyst for the redox-neutral organocatalytic mitsunobu reaction by DFT-guided catalyst design\",\"authors\":\"Dingguo Song , Changjun Zhang , Yuqi Cheng , Linlin Chen, Jie Lin, Changdi Zheng, Ting Liu, Yuxin Ding, Fei Ling, Weihui Zhong\",\"doi\":\"10.1016/j.gresc.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study of a Mitsunobu reaction is an important topic. Denton and co-workers first reported a novel (2-hydroxybenzyl)diphenylphosphine oxide for realizing the catalytic Mitsunobu reaction <em>via</em> a five-membered phosphonium species. However, it is still worth investigating how to improve catalysts with higher efficiency. Guided by computational and experimental studies, we designed a new type of biphenyl-based phosphine oxide that would form a six-membered phosphonium species as a key intermediate to trigger the catalytic Mitsunobu reaction with a lower barrier of the rate-determining step (30.3 kcal/mol). DFT calculations revealed that only trans dehydration was participated in our catalytic progress and a strong <em>π</em>-<em>π</em> interaction and small spatial constraint of <strong>TS-V</strong> were crucial for high behavior. This readily accessible, highly stable, easily recyclable and efficient catalyst would boost the catalytic Mitsunobu reaction.</div></div>\",\"PeriodicalId\":12794,\"journal\":{\"name\":\"Green Synthesis and Catalysis\",\"volume\":\"5 4\",\"pages\":\"Pages 290-296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Synthesis and Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666554923000844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Synthesis and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666554923000844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a more efficient catalyst for the redox-neutral organocatalytic mitsunobu reaction by DFT-guided catalyst design
The study of a Mitsunobu reaction is an important topic. Denton and co-workers first reported a novel (2-hydroxybenzyl)diphenylphosphine oxide for realizing the catalytic Mitsunobu reaction via a five-membered phosphonium species. However, it is still worth investigating how to improve catalysts with higher efficiency. Guided by computational and experimental studies, we designed a new type of biphenyl-based phosphine oxide that would form a six-membered phosphonium species as a key intermediate to trigger the catalytic Mitsunobu reaction with a lower barrier of the rate-determining step (30.3 kcal/mol). DFT calculations revealed that only trans dehydration was participated in our catalytic progress and a strong π-π interaction and small spatial constraint of TS-V were crucial for high behavior. This readily accessible, highly stable, easily recyclable and efficient catalyst would boost the catalytic Mitsunobu reaction.