{"title":"逻辑-逻辑模型的中性结构及其在医疗数据中的应用","authors":"Hassabelrasul Y. A. Shihabeldeen, Zahid Khan","doi":"10.54216/ijns.230107","DOIUrl":null,"url":null,"abstract":"In practical scenarios, it is common to encounter fuzzy data that contains numerous imprecise observations. The uncertainty associated with this type of data often leads to the use of interval statistical measures and the proposal of neutrosophic versions of probability distributions to better handle such data. This study introduces a new generalized design of the log-logistic distribution within a neutrosophic framework, building upon encouraging applications of this distribution in fields such as economics, engineering, survival analysis, and lifetime modeling. The proposed neutrosophic log-logistic distribution (NLLD) is analyzed in terms of statistical properties, including moments, shape coefficients, and various survival characteristics. To evaluate the performance of the predicted neutrosophic parameters, an estimation procedure is conducted. Finally, the practical application of the proposed model is demonstrated using a sample dataset consisting of 128 bladder cancer patients.","PeriodicalId":192295,"journal":{"name":"International Journal of Neutrosophic Science","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data\",\"authors\":\"Hassabelrasul Y. A. Shihabeldeen, Zahid Khan\",\"doi\":\"10.54216/ijns.230107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practical scenarios, it is common to encounter fuzzy data that contains numerous imprecise observations. The uncertainty associated with this type of data often leads to the use of interval statistical measures and the proposal of neutrosophic versions of probability distributions to better handle such data. This study introduces a new generalized design of the log-logistic distribution within a neutrosophic framework, building upon encouraging applications of this distribution in fields such as economics, engineering, survival analysis, and lifetime modeling. The proposed neutrosophic log-logistic distribution (NLLD) is analyzed in terms of statistical properties, including moments, shape coefficients, and various survival characteristics. To evaluate the performance of the predicted neutrosophic parameters, an estimation procedure is conducted. Finally, the practical application of the proposed model is demonstrated using a sample dataset consisting of 128 bladder cancer patients.\",\"PeriodicalId\":192295,\"journal\":{\"name\":\"International Journal of Neutrosophic Science\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neutrosophic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/ijns.230107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neutrosophic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/ijns.230107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neutrosophic Structure of the Log-logistic Model with Applications to Medical Data
In practical scenarios, it is common to encounter fuzzy data that contains numerous imprecise observations. The uncertainty associated with this type of data often leads to the use of interval statistical measures and the proposal of neutrosophic versions of probability distributions to better handle such data. This study introduces a new generalized design of the log-logistic distribution within a neutrosophic framework, building upon encouraging applications of this distribution in fields such as economics, engineering, survival analysis, and lifetime modeling. The proposed neutrosophic log-logistic distribution (NLLD) is analyzed in terms of statistical properties, including moments, shape coefficients, and various survival characteristics. To evaluate the performance of the predicted neutrosophic parameters, an estimation procedure is conducted. Finally, the practical application of the proposed model is demonstrated using a sample dataset consisting of 128 bladder cancer patients.