CNN工作负载表征和嵌入式系统上集成的CPU-GPU DVFS调控器

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Meruyert Karzhaubayeva;Aidar Amangeldi;Jurn-Gyu Park
{"title":"CNN工作负载表征和嵌入式系统上集成的CPU-GPU DVFS调控器","authors":"Meruyert Karzhaubayeva;Aidar Amangeldi;Jurn-Gyu Park","doi":"10.1109/LES.2023.3299335","DOIUrl":null,"url":null,"abstract":"Dynamic power management (DPM) techniques on mobile systems are indispensable for deep learning (DL) inference optimization, which is mainly performed on battery-based mobile and/or embedded platforms with constrained resources. To this end, we characterize CNN workloads using object detection applications of YOLOv4/-tiny and YOLOv3/-tiny, and then propose integrated CPU–GPU DVFS governor policies that scale integrated pairs of CPU and GPU frequencies to improve energy–delay product (EDP) with negligible inference execution time degradation. Our results show up to 16.7% EDP improvements with negligible (mostly less than 2%) performance degradation using object detection applications on NVIDIA Jetson TX2.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"15 4","pages":"202-205"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN Workloads Characterization and Integrated CPU–GPU DVFS Governors on Embedded Systems\",\"authors\":\"Meruyert Karzhaubayeva;Aidar Amangeldi;Jurn-Gyu Park\",\"doi\":\"10.1109/LES.2023.3299335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic power management (DPM) techniques on mobile systems are indispensable for deep learning (DL) inference optimization, which is mainly performed on battery-based mobile and/or embedded platforms with constrained resources. To this end, we characterize CNN workloads using object detection applications of YOLOv4/-tiny and YOLOv3/-tiny, and then propose integrated CPU–GPU DVFS governor policies that scale integrated pairs of CPU and GPU frequencies to improve energy–delay product (EDP) with negligible inference execution time degradation. Our results show up to 16.7% EDP improvements with negligible (mostly less than 2%) performance degradation using object detection applications on NVIDIA Jetson TX2.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"15 4\",\"pages\":\"202-205\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10261988/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10261988/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

移动系统上的动态电源管理(DPM)技术对于深度学习(DL)推理优化是必不可少的,这主要是在资源受限的基于电池的移动或/和嵌入式平台上进行的。为此,我们使用YOLOv4/-tiny和YOLOv3/-tiny的目标检测应用程序来表征CNN工作负载,然后提出集成的CPU-GPU DVFS调控策略,该策略可以扩展CPU和GPU的集成频率对,以提高能量延迟积(EDP),而推理执行时间退化可以忽略不计。我们的结果显示,使用NVIDIA Jetson TX2上的目标检测应用程序,EDP提高了16.7%,性能下降可以忽略不计(大多数低于2%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN Workloads Characterization and Integrated CPU–GPU DVFS Governors on Embedded Systems
Dynamic power management (DPM) techniques on mobile systems are indispensable for deep learning (DL) inference optimization, which is mainly performed on battery-based mobile and/or embedded platforms with constrained resources. To this end, we characterize CNN workloads using object detection applications of YOLOv4/-tiny and YOLOv3/-tiny, and then propose integrated CPU–GPU DVFS governor policies that scale integrated pairs of CPU and GPU frequencies to improve energy–delay product (EDP) with negligible inference execution time degradation. Our results show up to 16.7% EDP improvements with negligible (mostly less than 2%) performance degradation using object detection applications on NVIDIA Jetson TX2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信