Hamidreza Alikhani;Anil Kanduri;Pasi Liljeberg;Amir M. Rahmani;Nikil Dutt
{"title":"动态融合:资源高效多模态机器学习推理","authors":"Hamidreza Alikhani;Anil Kanduri;Pasi Liljeberg;Amir M. Rahmani;Nikil Dutt","doi":"10.1109/LES.2023.3298738","DOIUrl":null,"url":null,"abstract":"Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"15 4","pages":"222-225"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10261977","citationCount":"0","resultStr":"{\"title\":\"DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference\",\"authors\":\"Hamidreza Alikhani;Anil Kanduri;Pasi Liljeberg;Amir M. Rahmani;Nikil Dutt\",\"doi\":\"10.1109/LES.2023.3298738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"15 4\",\"pages\":\"222-225\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10261977\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10261977/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10261977/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
DynaFuse: Dynamic Fusion for Resource Efficient Multimodal Machine Learning Inference
Multimodal machine learning (MMML) applications combine results from different modalities in the inference phase to improve prediction accuracy. Existing MMML fusion strategies use static modality weight assignment, based on the intrinsic value of sensor modalities determined during the training phase. However, input data perturbations in practical scenarios affect the intrinsic value of modalities in the inference phase, lowering prediction accuracy, and draining computational and energy resources. In this letter, we present dynamic fusion (DynaFuse), a framework for dynamic and adaptive fusion of MMML inference to set modality weights, considering run-time parameters of input data quality and sensor energy budgets. We determine the insightfulness of modalities by combining the design-time intrinsic value with the run-time extrinsic value of different modalities to assign updated modality weights, catering to both accuracy requirements and energy conservation demands. The DynaFuse approach achieves up to 22% gain in prediction accuracy and an average energy savings of 34% on exemplary MMML applications of human activity recognition and stress monitoring in comparison with state-of-the-art static fusion approaches.
期刊介绍:
The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.