侧面大厦崩塌和火山碎屑雪崩:1980年后圣海伦斯火山的视角

IF 3.6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Lee Siebert, Mark E. Reid
{"title":"侧面大厦崩塌和火山碎屑雪崩:1980年后圣海伦斯火山的视角","authors":"Lee Siebert, Mark E. Reid","doi":"10.1007/s00445-023-01662-z","DOIUrl":null,"url":null,"abstract":"Abstract The 1980 eruption of Mount St. Helens was instrumental in advancing understanding of how volcanoes work. Lateral edifice collapses and the generation of volcanic debris avalanches were not widely recognized prior to that eruption, making assessment of their hazards and risks challenging. The proliferation of studies since 1980 on resulting deposits and evaluation of processes leading to their generation has built on the insights from the 1980 eruption. Volcano-related destabilizing phenomena, such as strength reduction by hydrothermal alteration, deformation and structural modifications from shallow magma intrusion, and thermal pressurization of pore fluids supplement those factors also affecting nonvolcanic slopes and can lead to larger failures. Remote and ground-based monitoring techniques can aid in detecting potentially destabilizing dynamic processes and in forecasting the size and location of future large lateral collapses, although forecasting remains a topic of investigation. More than a thousand large lateral collapse events likely ≥ 0.01 km 3 in volume have now been identified from deposits or inferred from source area morphology, leading to a recognition of their importance in the evolution of volcanoes and the hazards they pose. Criteria for recognition of debris-avalanche deposits include morphological factors and textural characteristics from outcrop to microscopic scale, allowing discrimination from other volcaniclastic deposits. Lateral edifice failure impacts a broad spectrum of volcanic structures in diverse tectonic settings and can occur multiple times during the evolution of individual volcanoes. Globally, collapses ≥ 0.1 km 3 in volume have been documented 5–6 times per century since 1500 CE, with about one per century having a volume ≥ 1 km 3 . Smaller events < 0.1 km 3 are underrepresented in the earlier record but also have high hazard impact.","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"57 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateral edifice collapse and volcanic debris avalanches: a post-1980 Mount St. Helens perspective\",\"authors\":\"Lee Siebert, Mark E. Reid\",\"doi\":\"10.1007/s00445-023-01662-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The 1980 eruption of Mount St. Helens was instrumental in advancing understanding of how volcanoes work. Lateral edifice collapses and the generation of volcanic debris avalanches were not widely recognized prior to that eruption, making assessment of their hazards and risks challenging. The proliferation of studies since 1980 on resulting deposits and evaluation of processes leading to their generation has built on the insights from the 1980 eruption. Volcano-related destabilizing phenomena, such as strength reduction by hydrothermal alteration, deformation and structural modifications from shallow magma intrusion, and thermal pressurization of pore fluids supplement those factors also affecting nonvolcanic slopes and can lead to larger failures. Remote and ground-based monitoring techniques can aid in detecting potentially destabilizing dynamic processes and in forecasting the size and location of future large lateral collapses, although forecasting remains a topic of investigation. More than a thousand large lateral collapse events likely ≥ 0.01 km 3 in volume have now been identified from deposits or inferred from source area morphology, leading to a recognition of their importance in the evolution of volcanoes and the hazards they pose. Criteria for recognition of debris-avalanche deposits include morphological factors and textural characteristics from outcrop to microscopic scale, allowing discrimination from other volcaniclastic deposits. Lateral edifice failure impacts a broad spectrum of volcanic structures in diverse tectonic settings and can occur multiple times during the evolution of individual volcanoes. Globally, collapses ≥ 0.1 km 3 in volume have been documented 5–6 times per century since 1500 CE, with about one per century having a volume ≥ 1 km 3 . Smaller events < 0.1 km 3 are underrepresented in the earlier record but also have high hazard impact.\",\"PeriodicalId\":55297,\"journal\":{\"name\":\"Bulletin of Volcanology\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Volcanology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00445-023-01662-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00445-023-01662-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

1980年圣海伦斯火山的喷发有助于加深人们对火山活动的了解。在那次喷发之前,人们并没有广泛认识到侧向大厦崩塌和火山碎屑雪崩的产生,这使得对其危害和风险的评估具有挑战性。自1980年以来,关于形成沉积物的研究和对形成过程的评估的激增,都是建立在1980年火山喷发的见解基础上的。与火山有关的不稳定现象,如热液蚀变造成的强度降低、浅层岩浆侵入造成的变形和结构改变、孔隙流体的热加压等,补充了这些影响非火山斜坡的因素,并可能导致更大的破坏。远程和地面监测技术可以帮助探测潜在的破坏稳定的动态过程,并预测未来大型横向崩塌的规模和位置,尽管预测仍然是一个研究课题。目前已从沉积物中确定或从源区形态中推断出1000多个大型横向塌陷事件,其体积可能≥0.01 km2,从而认识到它们在火山演化及其构成的危害中的重要性。碎屑-雪崩沉积的识别标准包括从露头到微观尺度的形态因素和结构特征,可以与其他火山碎屑沉积进行区分。在不同的构造背景下,横向结构破坏影响了广泛的火山结构,并且在单个火山的演化过程中可能发生多次。在全球范围内,自公元1500年以来,每世纪记录到5-6次体积≥0.1 km2的崩塌,每世纪约有一次体积≥1 km2的崩塌。小型活动<在早期的记录中,0.1 km 3的代表不足,但也具有很高的危害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lateral edifice collapse and volcanic debris avalanches: a post-1980 Mount St. Helens perspective

Lateral edifice collapse and volcanic debris avalanches: a post-1980 Mount St. Helens perspective
Abstract The 1980 eruption of Mount St. Helens was instrumental in advancing understanding of how volcanoes work. Lateral edifice collapses and the generation of volcanic debris avalanches were not widely recognized prior to that eruption, making assessment of their hazards and risks challenging. The proliferation of studies since 1980 on resulting deposits and evaluation of processes leading to their generation has built on the insights from the 1980 eruption. Volcano-related destabilizing phenomena, such as strength reduction by hydrothermal alteration, deformation and structural modifications from shallow magma intrusion, and thermal pressurization of pore fluids supplement those factors also affecting nonvolcanic slopes and can lead to larger failures. Remote and ground-based monitoring techniques can aid in detecting potentially destabilizing dynamic processes and in forecasting the size and location of future large lateral collapses, although forecasting remains a topic of investigation. More than a thousand large lateral collapse events likely ≥ 0.01 km 3 in volume have now been identified from deposits or inferred from source area morphology, leading to a recognition of their importance in the evolution of volcanoes and the hazards they pose. Criteria for recognition of debris-avalanche deposits include morphological factors and textural characteristics from outcrop to microscopic scale, allowing discrimination from other volcaniclastic deposits. Lateral edifice failure impacts a broad spectrum of volcanic structures in diverse tectonic settings and can occur multiple times during the evolution of individual volcanoes. Globally, collapses ≥ 0.1 km 3 in volume have been documented 5–6 times per century since 1500 CE, with about one per century having a volume ≥ 1 km 3 . Smaller events < 0.1 km 3 are underrepresented in the earlier record but also have high hazard impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Volcanology
Bulletin of Volcanology 地学-地球科学综合
CiteScore
6.40
自引率
20.00%
发文量
89
审稿时长
4-8 weeks
期刊介绍: Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信