流动系统的时空不稳定性:比较

IF 1.1 4区 数学 Q1 MATHEMATICS
Antonio Barletta
{"title":"流动系统的时空不稳定性:比较","authors":"Antonio Barletta","doi":"10.1007/s11587-023-00820-x","DOIUrl":null,"url":null,"abstract":"Abstract The definitions of temporal instability and of spatial instability in a flow system are comparatively surveyed. The simple model of one-dimensional Burgers’ flow is taken as the scenario where such different conceptions of instability are described. The temporal analysis of instability stems from Lyapunov’s theory, while the spatial analysis of instability interchanges time and space in defining the evolution variable. Thus, the growth rate parameter for temporally unstable perturbations of a basic flow state is to be replaced by a spatial growth rate when a coordinate assumes the role of evolution variable. Finally, the idea of spatial instability is applied to a Rayleigh-Bénard system given by a fluid-saturated horizontal porous layer with an anisotropic permeability and impermeable boundaries kept at different uniform temperatures.","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"39 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal to spatial instability in a flow system: a comparison\",\"authors\":\"Antonio Barletta\",\"doi\":\"10.1007/s11587-023-00820-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The definitions of temporal instability and of spatial instability in a flow system are comparatively surveyed. The simple model of one-dimensional Burgers’ flow is taken as the scenario where such different conceptions of instability are described. The temporal analysis of instability stems from Lyapunov’s theory, while the spatial analysis of instability interchanges time and space in defining the evolution variable. Thus, the growth rate parameter for temporally unstable perturbations of a basic flow state is to be replaced by a spatial growth rate when a coordinate assumes the role of evolution variable. Finally, the idea of spatial instability is applied to a Rayleigh-Bénard system given by a fluid-saturated horizontal porous layer with an anisotropic permeability and impermeable boundaries kept at different uniform temperatures.\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00820-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00820-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对流动系统中时间不稳定和空间不稳定的定义进行了比较研究。一维Burgers流的简单模型被作为描述这些不同不稳定性概念的场景。不稳定性的时间分析源于李亚普诺夫的理论,而不稳定性的空间分析在定义演化变量时互换了时间和空间。因此,当坐标作为演化变量时,将基本流态的时间不稳定扰动的增长率参数替换为空间增长率。最后,将空间不稳定性的思想应用于具有各向异性渗透率和不渗透边界保持在不同均匀温度的饱和流体水平多孔层所给出的rayleigh - b纳德系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temporal to spatial instability in a flow system: a comparison

Temporal to spatial instability in a flow system: a comparison
Abstract The definitions of temporal instability and of spatial instability in a flow system are comparatively surveyed. The simple model of one-dimensional Burgers’ flow is taken as the scenario where such different conceptions of instability are described. The temporal analysis of instability stems from Lyapunov’s theory, while the spatial analysis of instability interchanges time and space in defining the evolution variable. Thus, the growth rate parameter for temporally unstable perturbations of a basic flow state is to be replaced by a spatial growth rate when a coordinate assumes the role of evolution variable. Finally, the idea of spatial instability is applied to a Rayleigh-Bénard system given by a fluid-saturated horizontal porous layer with an anisotropic permeability and impermeable boundaries kept at different uniform temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信