{"title":"特殊类型球形建筑的自同构与对偶ⅱ:牟方六边形","authors":"James Parkinson, Hendrik Van Maldeghem","doi":"10.2140/iig.2023.20.443","DOIUrl":null,"url":null,"abstract":"We classify the automorphisms of a Moufang hexagon mapping no chamber to an opposite chamber (such automorphisms are called domestic). This forms part of a larger program to classify domestic automorphisms of Moufang spherical buildings.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automorphisms and opposition in spherical buildings of exceptional type, II: Moufang hexagons\",\"authors\":\"James Parkinson, Hendrik Van Maldeghem\",\"doi\":\"10.2140/iig.2023.20.443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify the automorphisms of a Moufang hexagon mapping no chamber to an opposite chamber (such automorphisms are called domestic). This forms part of a larger program to classify domestic automorphisms of Moufang spherical buildings.\",\"PeriodicalId\":36589,\"journal\":{\"name\":\"Innovations in Incidence Geometry\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/iig.2023.20.443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2023.20.443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Automorphisms and opposition in spherical buildings of exceptional type, II: Moufang hexagons
We classify the automorphisms of a Moufang hexagon mapping no chamber to an opposite chamber (such automorphisms are called domestic). This forms part of a larger program to classify domestic automorphisms of Moufang spherical buildings.