大厦:与线性代数群相关的类似建筑物的空间

Q4 Mathematics
Michael Bate, Benjamin Martin, Gerhard Röhrle
{"title":"大厦:与线性代数群相关的类似建筑物的空间","authors":"Michael Bate, Benjamin Martin, Gerhard Röhrle","doi":"10.2140/iig.2023.20.79","DOIUrl":null,"url":null,"abstract":"Given a semisimple linear algebraic $k$-group $G$, one has a spherical building $\\Delta_G$, and one can interpret the geometric realisation $\\Delta_G(\\mathbb R)$ of $\\Delta_G$ in terms of cocharacters of $G$. The aim of this paper is to extend this construction to the case when $G$ is an arbitrary connected linear algebraic group; we call the resulting object $\\Delta_G(\\mathbb R)$ the spherical edifice of $G$. We also define an object $V_G(\\mathbb R)$ which is an analogue of the vector building for a semisimple group; we call $V_G(\\mathbb R)$ the vector edifice. The notions of a linear map and an isomorphism between edifices are introduced; we construct some linear maps arising from natural group-theoretic operations. We also devise a family of metrics on $V_G(\\mathbb R)$ and show they are all bi-Lipschitz equivalent to each other; with this extra structure, $V_G(\\mathbb R)$ becomes a complete metric space. Finally, we present some motivation in terms of geometric invariant theory and variations on the Tits Centre Conjecture.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edifices: building-like spaces associated to linear algebraic groups\",\"authors\":\"Michael Bate, Benjamin Martin, Gerhard Röhrle\",\"doi\":\"10.2140/iig.2023.20.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a semisimple linear algebraic $k$-group $G$, one has a spherical building $\\\\Delta_G$, and one can interpret the geometric realisation $\\\\Delta_G(\\\\mathbb R)$ of $\\\\Delta_G$ in terms of cocharacters of $G$. The aim of this paper is to extend this construction to the case when $G$ is an arbitrary connected linear algebraic group; we call the resulting object $\\\\Delta_G(\\\\mathbb R)$ the spherical edifice of $G$. We also define an object $V_G(\\\\mathbb R)$ which is an analogue of the vector building for a semisimple group; we call $V_G(\\\\mathbb R)$ the vector edifice. The notions of a linear map and an isomorphism between edifices are introduced; we construct some linear maps arising from natural group-theoretic operations. We also devise a family of metrics on $V_G(\\\\mathbb R)$ and show they are all bi-Lipschitz equivalent to each other; with this extra structure, $V_G(\\\\mathbb R)$ becomes a complete metric space. Finally, we present some motivation in terms of geometric invariant theory and variations on the Tits Centre Conjecture.\",\"PeriodicalId\":36589,\"journal\":{\"name\":\"Innovations in Incidence Geometry\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/iig.2023.20.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2023.20.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edifices: building-like spaces associated to linear algebraic groups
Given a semisimple linear algebraic $k$-group $G$, one has a spherical building $\Delta_G$, and one can interpret the geometric realisation $\Delta_G(\mathbb R)$ of $\Delta_G$ in terms of cocharacters of $G$. The aim of this paper is to extend this construction to the case when $G$ is an arbitrary connected linear algebraic group; we call the resulting object $\Delta_G(\mathbb R)$ the spherical edifice of $G$. We also define an object $V_G(\mathbb R)$ which is an analogue of the vector building for a semisimple group; we call $V_G(\mathbb R)$ the vector edifice. The notions of a linear map and an isomorphism between edifices are introduced; we construct some linear maps arising from natural group-theoretic operations. We also devise a family of metrics on $V_G(\mathbb R)$ and show they are all bi-Lipschitz equivalent to each other; with this extra structure, $V_G(\mathbb R)$ becomes a complete metric space. Finally, we present some motivation in terms of geometric invariant theory and variations on the Tits Centre Conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Innovations in Incidence Geometry
Innovations in Incidence Geometry Mathematics-Geometry and Topology
CiteScore
0.40
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信