仿射建筑物的烟囱缩回将轨道编码为仿射标志变体

Q4 Mathematics
Elizabeth Milićević, Petra Schwer, Anne Thomas
{"title":"仿射建筑物的烟囱缩回将轨道编码为仿射标志变体","authors":"Elizabeth Milićević, Petra Schwer, Anne Thomas","doi":"10.2140/iig.2023.20.395","DOIUrl":null,"url":null,"abstract":"This paper determines the relationship between the geometry of retractions and the combinatorics of folded galleries for arbitrary affine buildings, and so provides a unified framework to study orbits in affine flag varieties. We introduce the notion of labeled folded galleries for any affine building X and use these to describe the preimages of chimney retractions. When X is the building for a group with an affine Tits system, such as the Bruhat-Tits building for a group over a local field, we can then relate labeled folded galleries and shadows to double coset intersections in affine flag varieties. This result generalizes the authors' previous joint work with Naqvi on groups over function fields.","PeriodicalId":36589,"journal":{"name":"Innovations in Incidence Geometry","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chimney retractions in affine buildings encode orbits in affine flag varieties\",\"authors\":\"Elizabeth Milićević, Petra Schwer, Anne Thomas\",\"doi\":\"10.2140/iig.2023.20.395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper determines the relationship between the geometry of retractions and the combinatorics of folded galleries for arbitrary affine buildings, and so provides a unified framework to study orbits in affine flag varieties. We introduce the notion of labeled folded galleries for any affine building X and use these to describe the preimages of chimney retractions. When X is the building for a group with an affine Tits system, such as the Bruhat-Tits building for a group over a local field, we can then relate labeled folded galleries and shadows to double coset intersections in affine flag varieties. This result generalizes the authors' previous joint work with Naqvi on groups over function fields.\",\"PeriodicalId\":36589,\"journal\":{\"name\":\"Innovations in Incidence Geometry\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/iig.2023.20.395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2023.20.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chimney retractions in affine buildings encode orbits in affine flag varieties
This paper determines the relationship between the geometry of retractions and the combinatorics of folded galleries for arbitrary affine buildings, and so provides a unified framework to study orbits in affine flag varieties. We introduce the notion of labeled folded galleries for any affine building X and use these to describe the preimages of chimney retractions. When X is the building for a group with an affine Tits system, such as the Bruhat-Tits building for a group over a local field, we can then relate labeled folded galleries and shadows to double coset intersections in affine flag varieties. This result generalizes the authors' previous joint work with Naqvi on groups over function fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Innovations in Incidence Geometry
Innovations in Incidence Geometry Mathematics-Geometry and Topology
CiteScore
0.40
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信