响应面法:纤维素微球粒径优化的通用工具

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES
Kimberly Wei Wei Tay, Suk Fun Chin, Mohd Effendi Wasli, Zaki Musa
{"title":"响应面法:纤维素微球粒径优化的通用工具","authors":"Kimberly Wei Wei Tay, Suk Fun Chin, Mohd Effendi Wasli, Zaki Musa","doi":"10.47836/pjst.31.6.10","DOIUrl":null,"url":null,"abstract":"Synthesis parameters are of utmost importance for controlling the particle sizes of cellulose beads. This study aims to investigate the effects of synthesis parameters e.g., stirring speed (250–1250 rpm), surfactant concentrations (0.5–6.0% w/v), cellulose concentrations (1–5% w/v), and reaction temperature (30-100°C) on the particle sizes for micron-sized cellulose beads (µCBs) as well as other parameters e.g. the volume (1.0 mL) and concentration (0.1–1.0% w/v) of cellulose for nanosized (nCBs) cellulose beads using the response surface methodology (RSM). A total of 27 runs were conducted applying RSM based on the central composite design approach with Minitab-19. Cellulose concentrations were shown to have the most significant effect on both µCBs and nCBs. Under optimized conditions, the minimum and maximum mean particle size of µCBs that could be achieved were 15.3 µm and 91 µm, respectively. The predicted mean particle size for nCBs was obtained at 0.01 nm as the smallest and 200 nm as the biggest particle size under the optimum conditions. This study envisages that RSM and experiments for targeted applications such as biomedicine and agriculture could optimize the particle sizes of cellulose beads.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response Surface Methodology: A Versatile Tool for the Optimization of Particle Sizes of Cellulose Beads\",\"authors\":\"Kimberly Wei Wei Tay, Suk Fun Chin, Mohd Effendi Wasli, Zaki Musa\",\"doi\":\"10.47836/pjst.31.6.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesis parameters are of utmost importance for controlling the particle sizes of cellulose beads. This study aims to investigate the effects of synthesis parameters e.g., stirring speed (250–1250 rpm), surfactant concentrations (0.5–6.0% w/v), cellulose concentrations (1–5% w/v), and reaction temperature (30-100°C) on the particle sizes for micron-sized cellulose beads (µCBs) as well as other parameters e.g. the volume (1.0 mL) and concentration (0.1–1.0% w/v) of cellulose for nanosized (nCBs) cellulose beads using the response surface methodology (RSM). A total of 27 runs were conducted applying RSM based on the central composite design approach with Minitab-19. Cellulose concentrations were shown to have the most significant effect on both µCBs and nCBs. Under optimized conditions, the minimum and maximum mean particle size of µCBs that could be achieved were 15.3 µm and 91 µm, respectively. The predicted mean particle size for nCBs was obtained at 0.01 nm as the smallest and 200 nm as the biggest particle size under the optimum conditions. This study envisages that RSM and experiments for targeted applications such as biomedicine and agriculture could optimize the particle sizes of cellulose beads.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.31.6.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.6.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

合成参数对纤维素微球粒径的控制至关重要。本研究旨在利用响应面法(RSM)研究合成参数(如搅拌速度(250-1250 rpm)、表面活性剂浓度(0.5-6.0% w/v)、纤维素浓度(1-5% w/v)和反应温度(30-100°C)对微米级纤维素珠(µCBs)粒径的影响,以及其他参数(如体积(1.0 mL)和浓度(0.1-1.0% w/v)对纳米级纤维素珠(nCBs)粒径的影响。基于Minitab-19的中心复合设计方法,应用RSM共进行了27次运行。纤维素浓度对µCBs和nCBs的影响最为显著。在优化条件下,可获得的µcb的最小和最大平均粒径分别为15.3µm和91µm。在最佳条件下,ncb的预测平均粒径最小为0.01 nm,最大为200 nm。该研究设想,RSM和针对生物医学和农业等目标应用的实验可以优化纤维素珠的粒径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Response Surface Methodology: A Versatile Tool for the Optimization of Particle Sizes of Cellulose Beads
Synthesis parameters are of utmost importance for controlling the particle sizes of cellulose beads. This study aims to investigate the effects of synthesis parameters e.g., stirring speed (250–1250 rpm), surfactant concentrations (0.5–6.0% w/v), cellulose concentrations (1–5% w/v), and reaction temperature (30-100°C) on the particle sizes for micron-sized cellulose beads (µCBs) as well as other parameters e.g. the volume (1.0 mL) and concentration (0.1–1.0% w/v) of cellulose for nanosized (nCBs) cellulose beads using the response surface methodology (RSM). A total of 27 runs were conducted applying RSM based on the central composite design approach with Minitab-19. Cellulose concentrations were shown to have the most significant effect on both µCBs and nCBs. Under optimized conditions, the minimum and maximum mean particle size of µCBs that could be achieved were 15.3 µm and 91 µm, respectively. The predicted mean particle size for nCBs was obtained at 0.01 nm as the smallest and 200 nm as the biggest particle size under the optimum conditions. This study envisages that RSM and experiments for targeted applications such as biomedicine and agriculture could optimize the particle sizes of cellulose beads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pertanika Journal of Science and Technology
Pertanika Journal of Science and Technology MULTIDISCIPLINARY SCIENCES-
CiteScore
1.50
自引率
16.70%
发文量
178
期刊介绍: Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信