Changyu Liu , Kean Chen , Huiqian Xiong , Along Zhao , Haiyan Zhang , Qingyu Li , Xinping Ai , Hanxi Yang , Yongjin Fang , Yuliang Cao
{"title":"用于低成本钠离子电池的新型 Na8Fe5(SO4)9@rGO 正极材料,具有高倍率能力和超长寿命","authors":"Changyu Liu , Kean Chen , Huiqian Xiong , Along Zhao , Haiyan Zhang , Qingyu Li , Xinping Ai , Hanxi Yang , Yongjin Fang , Yuliang Cao","doi":"10.1016/j.esci.2023.100186","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium-ion batteries (SIBs) are regarded as the most promising technology for large-scale energy storage systems. However, the practical application of SIBs is still hindered by the lack of applicable cathode materials. Herein, a novel phase-pure polyanionic Na<sub>8</sub>Fe<sub>5</sub>(SO<sub>4</sub>)<sub>9</sub> is designed and employed as a cathode material for SIBs for the first time. The Na<sub>8</sub>Fe<sub>5</sub>(SO<sub>4</sub>)<sub>9</sub> has an alluaudite-type sulfate framework and small Na<sup>+</sup> ion diffusion barriers. As expected, the as-synthesized Na<sub>8</sub>Fe<sub>5</sub>(SO<sub>4</sub>)<sub>9</sub>@rGO exhibits a high working potential of 3.8 V (versus Na/Na<sup>+</sup>), a superior reversible capacity of 100.2 mAh g<sup>−1</sup> at 0.2 C, excellent rate performance (∼80 mAh g<sup>−1</sup> at 10 C, ∼63 mAh g<sup>−1</sup> at 50 C), and an ultra-long cycling life (91.9% capacity retention after 10,000 cycles at 10 C, 81% capacity retention after 20,000 cycles at 50 C). We use various techniques and computational methods to comprehensively investigate the electrochemical reaction mechanisms of Na<sub>8</sub>Fe<sub>5</sub>(SO<sub>4</sub>)<sub>9</sub>@rGO.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 1","pages":"Article 100186"},"PeriodicalIF":42.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266714172300126X/pdfft?md5=219558f52acb63681c26c7fe8207a28a&pid=1-s2.0-S266714172300126X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel Na8Fe5(SO4)9@rGO cathode material with high rate capability and ultra-long lifespan for low-cost sodium-ion batteries\",\"authors\":\"Changyu Liu , Kean Chen , Huiqian Xiong , Along Zhao , Haiyan Zhang , Qingyu Li , Xinping Ai , Hanxi Yang , Yongjin Fang , Yuliang Cao\",\"doi\":\"10.1016/j.esci.2023.100186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sodium-ion batteries (SIBs) are regarded as the most promising technology for large-scale energy storage systems. However, the practical application of SIBs is still hindered by the lack of applicable cathode materials. Herein, a novel phase-pure polyanionic Na<sub>8</sub>Fe<sub>5</sub>(SO<sub>4</sub>)<sub>9</sub> is designed and employed as a cathode material for SIBs for the first time. The Na<sub>8</sub>Fe<sub>5</sub>(SO<sub>4</sub>)<sub>9</sub> has an alluaudite-type sulfate framework and small Na<sup>+</sup> ion diffusion barriers. As expected, the as-synthesized Na<sub>8</sub>Fe<sub>5</sub>(SO<sub>4</sub>)<sub>9</sub>@rGO exhibits a high working potential of 3.8 V (versus Na/Na<sup>+</sup>), a superior reversible capacity of 100.2 mAh g<sup>−1</sup> at 0.2 C, excellent rate performance (∼80 mAh g<sup>−1</sup> at 10 C, ∼63 mAh g<sup>−1</sup> at 50 C), and an ultra-long cycling life (91.9% capacity retention after 10,000 cycles at 10 C, 81% capacity retention after 20,000 cycles at 50 C). We use various techniques and computational methods to comprehensively investigate the electrochemical reaction mechanisms of Na<sub>8</sub>Fe<sub>5</sub>(SO<sub>4</sub>)<sub>9</sub>@rGO.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 1\",\"pages\":\"Article 100186\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266714172300126X/pdfft?md5=219558f52acb63681c26c7fe8207a28a&pid=1-s2.0-S266714172300126X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266714172300126X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266714172300126X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
钠离子电池(SIB)被认为是最有前途的大规模储能系统技术。然而,由于缺乏适用的正极材料,钠离子电池的实际应用仍然受到阻碍。本文首次设计并采用了一种新型相纯多阴离子Na8Fe5(SO4)9作为SIBs的阴极材料。Na8Fe5(SO4)9 具有异绿泥石型硫酸盐框架和较小的 Na+ 离子扩散障碍。正如预期的那样,合成的 Na8Fe5(SO4)9@rGO 具有 3.8 V 的高工作电位(相对于 Na/Na+),在 0.2 C 时的可逆容量为 100.2 mAh g-1,具有优异的速率性能(10 C 时为 ∼80 mAh g-1,50 C 时为 ∼63 mAh g-1)和超长的循环寿命(10 C 时循环 10,000 次后容量保持率为 91.9%,50 C 时循环 20,000 次后容量保持率为 81%)。我们利用各种技术和计算方法全面研究了 Na8Fe5(SO4)9@rGO 的电化学反应机制。
A novel Na8Fe5(SO4)9@rGO cathode material with high rate capability and ultra-long lifespan for low-cost sodium-ion batteries
Sodium-ion batteries (SIBs) are regarded as the most promising technology for large-scale energy storage systems. However, the practical application of SIBs is still hindered by the lack of applicable cathode materials. Herein, a novel phase-pure polyanionic Na8Fe5(SO4)9 is designed and employed as a cathode material for SIBs for the first time. The Na8Fe5(SO4)9 has an alluaudite-type sulfate framework and small Na+ ion diffusion barriers. As expected, the as-synthesized Na8Fe5(SO4)9@rGO exhibits a high working potential of 3.8 V (versus Na/Na+), a superior reversible capacity of 100.2 mAh g−1 at 0.2 C, excellent rate performance (∼80 mAh g−1 at 10 C, ∼63 mAh g−1 at 50 C), and an ultra-long cycling life (91.9% capacity retention after 10,000 cycles at 10 C, 81% capacity retention after 20,000 cycles at 50 C). We use various techniques and computational methods to comprehensively investigate the electrochemical reaction mechanisms of Na8Fe5(SO4)9@rGO.