利用先进的机器学习技术锐化LHC ii型2HDM的A→Z(*)h特征

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
W. Esmail, A. Hammad, S. Moretti
{"title":"利用先进的机器学习技术锐化LHC ii型2HDM的A→Z(*)h特征","authors":"W. Esmail, A. Hammad, S. Moretti","doi":"10.1007/jhep11(2023)020","DOIUrl":null,"url":null,"abstract":"A bstract The A → Z (*) h decay signature has been highlighted as possibly being the first testable probe of the Standard Model (SM) Higgs boson discovered in 2012 ( h ) interacting with Higgs companion states, such as those existing in a 2-Higgs Doublet Model (2HDM), chiefly, a CP-odd one ( A ). The production mechanism of the latter at the Large Hadron Collider (LHC) takes place via $$ b\\overline{b} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>b</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> -annihilation and/or gg -fusion, depending on the 2HDM parameters, in turn dictated by the Yukawa structure of this Beyond the SM (BSM) scenario. Among the possible incarnations of the 2HDM, we test here the so-called Type-II, for a twofold reason. On the one hand, it intriguingly offers two very distinct parameter regions compliant with the SM-like Higgs measurements, i.e., where the so-called ‘SM limit’ of the 2HDM can be achieved. On the other hand, in both configurations, the AZh coupling is generally small, hence the signal is strongly polluted by backgrounds, so that the exploitation of Machine Learning (ML) techniques becomes extremely useful. In this paper, we show that the application of advanced ML implementations can be decisive in establishing such a signal. This is true for all distinctive kinematical configurations involving the A → Z (*) h decay, i.e., below threshold ( m A < m Z + m h ), at its maximum ( m Z + m h < m A < 2 m t ) and near the onset of $$ t\\overline{t} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> pair production ( m A ≈ 2 m t ), for which we propose Benchmark Points (BPs) for future phenomenological analyses.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"12 6","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharpening the A → Z(*)h signature of the Type-II 2HDM at the LHC through advanced Machine Learning\",\"authors\":\"W. Esmail, A. Hammad, S. Moretti\",\"doi\":\"10.1007/jhep11(2023)020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract The A → Z (*) h decay signature has been highlighted as possibly being the first testable probe of the Standard Model (SM) Higgs boson discovered in 2012 ( h ) interacting with Higgs companion states, such as those existing in a 2-Higgs Doublet Model (2HDM), chiefly, a CP-odd one ( A ). The production mechanism of the latter at the Large Hadron Collider (LHC) takes place via $$ b\\\\overline{b} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>b</mml:mi> <mml:mover> <mml:mi>b</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> -annihilation and/or gg -fusion, depending on the 2HDM parameters, in turn dictated by the Yukawa structure of this Beyond the SM (BSM) scenario. Among the possible incarnations of the 2HDM, we test here the so-called Type-II, for a twofold reason. On the one hand, it intriguingly offers two very distinct parameter regions compliant with the SM-like Higgs measurements, i.e., where the so-called ‘SM limit’ of the 2HDM can be achieved. On the other hand, in both configurations, the AZh coupling is generally small, hence the signal is strongly polluted by backgrounds, so that the exploitation of Machine Learning (ML) techniques becomes extremely useful. In this paper, we show that the application of advanced ML implementations can be decisive in establishing such a signal. This is true for all distinctive kinematical configurations involving the A → Z (*) h decay, i.e., below threshold ( m A < m Z + m h ), at its maximum ( m Z + m h < m A < 2 m t ) and near the onset of $$ t\\\\overline{t} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>t</mml:mi> <mml:mover> <mml:mi>t</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> pair production ( m A ≈ 2 m t ), for which we propose Benchmark Points (BPs) for future phenomenological analyses.\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"12 6\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep11(2023)020\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)020","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

A→Z (*) h衰变特征被强调为可能是2012年发现的标准模型(SM)希格斯玻色子(h)与希格斯伴生态相互作用的第一个可测试探测,例如存在于2-希格斯双重态模型(2HDM)中的那些,主要是一个cp奇数(A)。后者在大型强子对撞机(LHC)上的产生机制是通过$$ b\overline{b} $$ b¯湮灭和/或gg -聚变发生的,这取决于2HDM参数,而这又取决于这个超越SM (BSM)场景的汤川结构。在可能的2HDM版本中,我们在这里测试所谓的Type-II,有两个原因。一方面,有趣的是,它提供了两个非常不同的参数区域,符合类标准希格斯测量,即,所谓的2HDM的“标准SM极限”可以实现。另一方面,在这两种配置中,AZh耦合通常很小,因此信号受到背景的强烈污染,因此机器学习(ML)技术的利用变得非常有用。在本文中,我们证明了高级机器学习实现的应用对于建立这样的信号是决定性的。这对于涉及A→Z (*) h衰减的所有不同的运动学构型都是正确的,即低于阈值(m A &lt;m Z + m h),在其最大值(m Z + m h &lt;m &;2 m t)和接近$$ t\overline{t} $$ t t¯对生产(m A≈2 m t)的开始(m A≈2 m t),我们提出了用于未来现象学分析的基准点(bp)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharpening the A → Z(*)h signature of the Type-II 2HDM at the LHC through advanced Machine Learning
A bstract The A → Z (*) h decay signature has been highlighted as possibly being the first testable probe of the Standard Model (SM) Higgs boson discovered in 2012 ( h ) interacting with Higgs companion states, such as those existing in a 2-Higgs Doublet Model (2HDM), chiefly, a CP-odd one ( A ). The production mechanism of the latter at the Large Hadron Collider (LHC) takes place via $$ b\overline{b} $$ b b ¯ -annihilation and/or gg -fusion, depending on the 2HDM parameters, in turn dictated by the Yukawa structure of this Beyond the SM (BSM) scenario. Among the possible incarnations of the 2HDM, we test here the so-called Type-II, for a twofold reason. On the one hand, it intriguingly offers two very distinct parameter regions compliant with the SM-like Higgs measurements, i.e., where the so-called ‘SM limit’ of the 2HDM can be achieved. On the other hand, in both configurations, the AZh coupling is generally small, hence the signal is strongly polluted by backgrounds, so that the exploitation of Machine Learning (ML) techniques becomes extremely useful. In this paper, we show that the application of advanced ML implementations can be decisive in establishing such a signal. This is true for all distinctive kinematical configurations involving the A → Z (*) h decay, i.e., below threshold ( m A < m Z + m h ), at its maximum ( m Z + m h < m A < 2 m t ) and near the onset of $$ t\overline{t} $$ t t ¯ pair production ( m A ≈ 2 m t ), for which we propose Benchmark Points (BPs) for future phenomenological analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信