{"title":"在低温实验中衡量整体有效性","authors":"Carol Bryant, James L. Rutledge","doi":"10.1115/1.4063412","DOIUrl":null,"url":null,"abstract":"Abstract The design of film-cooled engine components requires an understanding of the expected temperature distributions while in service, thus requiring accurate predictions through low-temperature testing. Overall effectiveness, ϕ, is the integrated indicator of overall cooling performance. An experiment to measure ϕ at low temperature requires appropriate scaling through careful selection of not only the coolant and freestream gases but also the model material itself. Matching ϕ requires that the experiment has matched values of the adiabatic effectiveness, Biot number, coolant warming factor, and ratio of external to internal heat transfer coefficient. Previous research has shown the requirements to match each of those four parameters individually. However, matching all those parameters simultaneously presents an overconstrained problem, and no comprehensive recommendations exist for the practical experimentalist who wishes to conduct an appropriately scaled, low-temperature experiment truly suitable for determining ϕ. Four fluidic parameters are identified, which in an experiment must be as close as possible to their values at engine conditions. A normalized root-mean-square difference (NRMSD) of the residuals of those parameters is proposed to quantify how well a proposed wind tunnel experiment is likely to yield engine-relevant ϕ values. We show that this process may be used by any experimentalist to identify the appropriate fluids, conditions, and materials for a matched ϕ experiment. Several case studies were performed using computational fluid dynamics (CFD) to show the utility of this process. Of the common experimental techniques examined here, a matched Biot number experiment with 500 K freestream air and 250 K coolant appears to be particularly adept at simulating engine conditions, even better than experiments that make use of CO2 coolant.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"27 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCALING OVERALL EFFECTIVENESS IN LOW TEMPERATURE EXPERIMENTS\",\"authors\":\"Carol Bryant, James L. Rutledge\",\"doi\":\"10.1115/1.4063412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The design of film-cooled engine components requires an understanding of the expected temperature distributions while in service, thus requiring accurate predictions through low-temperature testing. Overall effectiveness, ϕ, is the integrated indicator of overall cooling performance. An experiment to measure ϕ at low temperature requires appropriate scaling through careful selection of not only the coolant and freestream gases but also the model material itself. Matching ϕ requires that the experiment has matched values of the adiabatic effectiveness, Biot number, coolant warming factor, and ratio of external to internal heat transfer coefficient. Previous research has shown the requirements to match each of those four parameters individually. However, matching all those parameters simultaneously presents an overconstrained problem, and no comprehensive recommendations exist for the practical experimentalist who wishes to conduct an appropriately scaled, low-temperature experiment truly suitable for determining ϕ. Four fluidic parameters are identified, which in an experiment must be as close as possible to their values at engine conditions. A normalized root-mean-square difference (NRMSD) of the residuals of those parameters is proposed to quantify how well a proposed wind tunnel experiment is likely to yield engine-relevant ϕ values. We show that this process may be used by any experimentalist to identify the appropriate fluids, conditions, and materials for a matched ϕ experiment. Several case studies were performed using computational fluid dynamics (CFD) to show the utility of this process. Of the common experimental techniques examined here, a matched Biot number experiment with 500 K freestream air and 250 K coolant appears to be particularly adept at simulating engine conditions, even better than experiments that make use of CO2 coolant.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063412\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063412","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
SCALING OVERALL EFFECTIVENESS IN LOW TEMPERATURE EXPERIMENTS
Abstract The design of film-cooled engine components requires an understanding of the expected temperature distributions while in service, thus requiring accurate predictions through low-temperature testing. Overall effectiveness, ϕ, is the integrated indicator of overall cooling performance. An experiment to measure ϕ at low temperature requires appropriate scaling through careful selection of not only the coolant and freestream gases but also the model material itself. Matching ϕ requires that the experiment has matched values of the adiabatic effectiveness, Biot number, coolant warming factor, and ratio of external to internal heat transfer coefficient. Previous research has shown the requirements to match each of those four parameters individually. However, matching all those parameters simultaneously presents an overconstrained problem, and no comprehensive recommendations exist for the practical experimentalist who wishes to conduct an appropriately scaled, low-temperature experiment truly suitable for determining ϕ. Four fluidic parameters are identified, which in an experiment must be as close as possible to their values at engine conditions. A normalized root-mean-square difference (NRMSD) of the residuals of those parameters is proposed to quantify how well a proposed wind tunnel experiment is likely to yield engine-relevant ϕ values. We show that this process may be used by any experimentalist to identify the appropriate fluids, conditions, and materials for a matched ϕ experiment. Several case studies were performed using computational fluid dynamics (CFD) to show the utility of this process. Of the common experimental techniques examined here, a matched Biot number experiment with 500 K freestream air and 250 K coolant appears to be particularly adept at simulating engine conditions, even better than experiments that make use of CO2 coolant.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.