Samuele Giannini, Guilherme M. Luz, Philipp von Jeinsen, Mattia Straccia, Volker Gümmer
{"title":"串联式叶片轴流压气机级反作用力影响的数值研究","authors":"Samuele Giannini, Guilherme M. Luz, Philipp von Jeinsen, Mattia Straccia, Volker Gümmer","doi":"10.1115/1.4063513","DOIUrl":null,"url":null,"abstract":"Abstract Many investigations have defined Smith-type diagrams to guide the preliminary designs of conventional axial compressor stages on the choice of loading, flow coefficient, and degree of reaction. However, the recent development of unconventional axial compressor stages with tandem vanes has not been accompanied by similar studies aimed at tailoring existing correlations to the new type of vanes. While it is clear that axial compressor stages with tandem vanes operate in higher working ranges than conventional stages, it is less clear how the choice of reaction affects the aerodynamic behavior of such setups. For this purpose, this paper numerically investigates a low-speed axial compressor stage with different degrees of reaction for increasing loading levels. The metal angles of the unshrouded rotor and the shrouded stator are modified to ensure that the other design parameters of the stage, namely the work and flow coefficients, are kept constant, and that the influence of the degree of reaction is isolated. The investigation begins with Q2D simulations of the reference midspan aerofoils. It then extends to a 3D configuration, while maintaining the radial distribution of the aerofoil parameters from the reference 3D blades. New correlations are presented, aiming to show how the performance of the stage in terms of efficiency, total pressure losses, and loading coefficients of the vanes are influenced by the different degrees of reaction investigated. This paper, therefore, provides insight into the preliminary choices of parameters for the design of axial compressor stages with tandem vanes.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"277 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of the Influence of the Degree of Reaction in an Axial Compressor Stage with Tandem Vanes\",\"authors\":\"Samuele Giannini, Guilherme M. Luz, Philipp von Jeinsen, Mattia Straccia, Volker Gümmer\",\"doi\":\"10.1115/1.4063513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many investigations have defined Smith-type diagrams to guide the preliminary designs of conventional axial compressor stages on the choice of loading, flow coefficient, and degree of reaction. However, the recent development of unconventional axial compressor stages with tandem vanes has not been accompanied by similar studies aimed at tailoring existing correlations to the new type of vanes. While it is clear that axial compressor stages with tandem vanes operate in higher working ranges than conventional stages, it is less clear how the choice of reaction affects the aerodynamic behavior of such setups. For this purpose, this paper numerically investigates a low-speed axial compressor stage with different degrees of reaction for increasing loading levels. The metal angles of the unshrouded rotor and the shrouded stator are modified to ensure that the other design parameters of the stage, namely the work and flow coefficients, are kept constant, and that the influence of the degree of reaction is isolated. The investigation begins with Q2D simulations of the reference midspan aerofoils. It then extends to a 3D configuration, while maintaining the radial distribution of the aerofoil parameters from the reference 3D blades. New correlations are presented, aiming to show how the performance of the stage in terms of efficiency, total pressure losses, and loading coefficients of the vanes are influenced by the different degrees of reaction investigated. This paper, therefore, provides insight into the preliminary choices of parameters for the design of axial compressor stages with tandem vanes.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063513\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063513","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical Investigation of the Influence of the Degree of Reaction in an Axial Compressor Stage with Tandem Vanes
Abstract Many investigations have defined Smith-type diagrams to guide the preliminary designs of conventional axial compressor stages on the choice of loading, flow coefficient, and degree of reaction. However, the recent development of unconventional axial compressor stages with tandem vanes has not been accompanied by similar studies aimed at tailoring existing correlations to the new type of vanes. While it is clear that axial compressor stages with tandem vanes operate in higher working ranges than conventional stages, it is less clear how the choice of reaction affects the aerodynamic behavior of such setups. For this purpose, this paper numerically investigates a low-speed axial compressor stage with different degrees of reaction for increasing loading levels. The metal angles of the unshrouded rotor and the shrouded stator are modified to ensure that the other design parameters of the stage, namely the work and flow coefficients, are kept constant, and that the influence of the degree of reaction is isolated. The investigation begins with Q2D simulations of the reference midspan aerofoils. It then extends to a 3D configuration, while maintaining the radial distribution of the aerofoil parameters from the reference 3D blades. New correlations are presented, aiming to show how the performance of the stage in terms of efficiency, total pressure losses, and loading coefficients of the vanes are influenced by the different degrees of reaction investigated. This paper, therefore, provides insight into the preliminary choices of parameters for the design of axial compressor stages with tandem vanes.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.