高压涡轮级的直接数值模拟:非定常边界层转捩及其流动结构

IF 1.9 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Taiyang Wang, Yaomin Zhao, John Leggett, Richard Sandberg
{"title":"高压涡轮级的直接数值模拟:非定常边界层转捩及其流动结构","authors":"Taiyang Wang, Yaomin Zhao, John Leggett, Richard Sandberg","doi":"10.1115/1.4063510","DOIUrl":null,"url":null,"abstract":"Abstract In the present study, we investigate the unsteady boundary layer transition based on the direct numerical simulation database of a high-pressure turbine (HPT) stage (Zhao and Sandberg, 2021, High-Fidelity Simulations of a High-Pressure Turbine Stage: Effects of Reynolds Number and Inlet Turbulence, ASME Turbo Expo 2021, Paper No. GT2021-58995), focusing on the transition mechanisms on the rotor blade, affected by the incoming periodic wakes and the background freestream turbulence (FST). On the basis of the fully resolved flow fields, we provide detailed analysis of the flow structures responsible for the transition, and two distinctive transition paths have been identified. The first path is the typical bypass transition via the instability of Klebanoff streaks, which happens when the transition region is not directly affected by the wake. The suction-side boundary layer is disturbed at the leading edge, resulting in the formation of streamwise streaks. These streaky structures endure varicose instability in the region with adverse pressure gradient (APG), then quickly break down into turbulent spots, which then evolve into fully turbulent flow. The other transition path is a consequence of the direct interaction between the wake structures and the blade boundary layer, when the wake apex starts to affect the transitional region. To be specific, the wake structures directly interact with the separation bubble in the APG region, causing sudden breakdown into turbulence. A calmed region is found to follow the wake-induced turbulent boundary layer. It is observed that the recovery to a calmed region can be impacted by the FST, as the calmed region in case with no FST is much longer compared to cases with stronger FST.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"118 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Numerical Simulation of a High-Pressure Turbine Stage: Unsteady Boundary Layer Transition and the Resulting Flow Structures\",\"authors\":\"Taiyang Wang, Yaomin Zhao, John Leggett, Richard Sandberg\",\"doi\":\"10.1115/1.4063510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present study, we investigate the unsteady boundary layer transition based on the direct numerical simulation database of a high-pressure turbine (HPT) stage (Zhao and Sandberg, 2021, High-Fidelity Simulations of a High-Pressure Turbine Stage: Effects of Reynolds Number and Inlet Turbulence, ASME Turbo Expo 2021, Paper No. GT2021-58995), focusing on the transition mechanisms on the rotor blade, affected by the incoming periodic wakes and the background freestream turbulence (FST). On the basis of the fully resolved flow fields, we provide detailed analysis of the flow structures responsible for the transition, and two distinctive transition paths have been identified. The first path is the typical bypass transition via the instability of Klebanoff streaks, which happens when the transition region is not directly affected by the wake. The suction-side boundary layer is disturbed at the leading edge, resulting in the formation of streamwise streaks. These streaky structures endure varicose instability in the region with adverse pressure gradient (APG), then quickly break down into turbulent spots, which then evolve into fully turbulent flow. The other transition path is a consequence of the direct interaction between the wake structures and the blade boundary layer, when the wake apex starts to affect the transitional region. To be specific, the wake structures directly interact with the separation bubble in the APG region, causing sudden breakdown into turbulence. A calmed region is found to follow the wake-induced turbulent boundary layer. It is observed that the recovery to a calmed region can be impacted by the FST, as the calmed region in case with no FST is much longer compared to cases with stronger FST.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063510\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063510","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们基于高压涡轮(HPT)级的直接数值模拟数据库研究了非定常边界层转捩(Zhao and Sandberg, 2021,高压涡轮级的高保真模拟:雷诺数和入口湍流的影响,ASME Turbo Expo 2021,论文编号:GT2021-58995),重点研究了受来流周期性尾迹和背景自由流湍流(FST)影响的动叶过渡机制。在完全解析流场的基础上,我们详细分析了导致过渡的流动结构,并确定了两种不同的过渡路径。第一个路径是典型的通过kklebanoff条纹不稳定性的旁路转捩,发生在转捩区域不受尾迹直接影响的情况下。吸力侧边界层在前缘受到扰动,形成顺流条纹。这些条纹状结构在具有逆压梯度(APG)的区域承受着静脉曲张不稳定性,然后迅速分解成湍流点,然后演变成完全湍流。另一种过渡路径是尾流结构与叶片边界层直接相互作用的结果,当尾流顶点开始影响过渡区域时。具体来说,尾迹结构直接与APG区域的分离泡相互作用,导致突然击穿成湍流。在尾迹诱导的湍流边界层之后发现了一个平静区。可以观察到,恢复到平静区域会受到FST的影响,因为没有FST的平静区域比FST强的情况下要长得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Numerical Simulation of a High-Pressure Turbine Stage: Unsteady Boundary Layer Transition and the Resulting Flow Structures
Abstract In the present study, we investigate the unsteady boundary layer transition based on the direct numerical simulation database of a high-pressure turbine (HPT) stage (Zhao and Sandberg, 2021, High-Fidelity Simulations of a High-Pressure Turbine Stage: Effects of Reynolds Number and Inlet Turbulence, ASME Turbo Expo 2021, Paper No. GT2021-58995), focusing on the transition mechanisms on the rotor blade, affected by the incoming periodic wakes and the background freestream turbulence (FST). On the basis of the fully resolved flow fields, we provide detailed analysis of the flow structures responsible for the transition, and two distinctive transition paths have been identified. The first path is the typical bypass transition via the instability of Klebanoff streaks, which happens when the transition region is not directly affected by the wake. The suction-side boundary layer is disturbed at the leading edge, resulting in the formation of streamwise streaks. These streaky structures endure varicose instability in the region with adverse pressure gradient (APG), then quickly break down into turbulent spots, which then evolve into fully turbulent flow. The other transition path is a consequence of the direct interaction between the wake structures and the blade boundary layer, when the wake apex starts to affect the transitional region. To be specific, the wake structures directly interact with the separation bubble in the APG region, causing sudden breakdown into turbulence. A calmed region is found to follow the wake-induced turbulent boundary layer. It is observed that the recovery to a calmed region can be impacted by the FST, as the calmed region in case with no FST is much longer compared to cases with stronger FST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
11.80%
发文量
168
审稿时长
9 months
期刊介绍: The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines. Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信