关于随机整函数的最大模和零的不等式

Pub Date : 2023-10-19 DOI:10.1017/s0013091523000639
Hui Li, Jun Wang, Xiao Yao, Zhuan Ye
{"title":"关于随机整函数的最大模和零的不等式","authors":"Hui Li, Jun Wang, Xiao Yao, Zhuan Ye","doi":"10.1017/s0013091523000639","DOIUrl":null,"url":null,"abstract":"Abstract Let $f(z)=\\sum\\limits_{j=0}^{\\infty} a_j z^j$ be a transcendental entire function and let $f_\\omega(z)=\\sum\\limits_{j=0}^{\\infty}\\chi_j(\\omega) a_j z^j$ be a random entire function, where $\\chi_j(\\omega)$ are independent and identically distributed random variables defined on a probability space $(\\Omega, \\mathcal{F}, \\mu)$ . In this paper, we first define a family of random entire functions, which includes Gaussian, Rademacher and Steinhaus entire functions. We prove that, for almost all functions in the family and for any constant C > 1, there exist a constant $r_0=r_0(\\omega)$ and a set $E\\subset [e, \\infty)$ of finite logarithmic measure such that, for $r \\gt r_0$ and $r\\notin E$ , \\begin{equation*} |\\log M(r, f)- N(r,0, f_\\omega)|\\le (C/A)^{\\frac1{B}}\\,\\log^{\\frac1{B}}\\,\\log M(r,f) +\\log\\,\\log M(r, f), \\qquad a.s. \\end{equation*} where $A, B$ are constants, $M(r, f)$ is the maximum modulus and $N(r, 0, f)$ is the integrated zero-counting function of f . As a by-product of our main results, we prove Nevanlinna’s second main theorem for random entire functions. Thus, the characteristic function of almost all functions in the family is bounded above by an integrated counting function, rather than by two integrated counting functions as in the classical Nevanlinna theory. For instance, we show that, for almost all Gaussian entire functions f ω and for any ϵ > 0, there is r 0 such that, for $r \\gt r_0$ , \\begin{equation*} T(r, f) \\le N(r,0, f_\\omega)+\\left(\\tfrac12+\\epsilon\\right) \\log T(r, f). \\end{equation*}","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inequalities Concerning Maximum Modulus and Zeros of Random Entire Functions\",\"authors\":\"Hui Li, Jun Wang, Xiao Yao, Zhuan Ye\",\"doi\":\"10.1017/s0013091523000639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $f(z)=\\\\sum\\\\limits_{j=0}^{\\\\infty} a_j z^j$ be a transcendental entire function and let $f_\\\\omega(z)=\\\\sum\\\\limits_{j=0}^{\\\\infty}\\\\chi_j(\\\\omega) a_j z^j$ be a random entire function, where $\\\\chi_j(\\\\omega)$ are independent and identically distributed random variables defined on a probability space $(\\\\Omega, \\\\mathcal{F}, \\\\mu)$ . In this paper, we first define a family of random entire functions, which includes Gaussian, Rademacher and Steinhaus entire functions. We prove that, for almost all functions in the family and for any constant C > 1, there exist a constant $r_0=r_0(\\\\omega)$ and a set $E\\\\subset [e, \\\\infty)$ of finite logarithmic measure such that, for $r \\\\gt r_0$ and $r\\\\notin E$ , \\\\begin{equation*} |\\\\log M(r, f)- N(r,0, f_\\\\omega)|\\\\le (C/A)^{\\\\frac1{B}}\\\\,\\\\log^{\\\\frac1{B}}\\\\,\\\\log M(r,f) +\\\\log\\\\,\\\\log M(r, f), \\\\qquad a.s. \\\\end{equation*} where $A, B$ are constants, $M(r, f)$ is the maximum modulus and $N(r, 0, f)$ is the integrated zero-counting function of f . As a by-product of our main results, we prove Nevanlinna’s second main theorem for random entire functions. Thus, the characteristic function of almost all functions in the family is bounded above by an integrated counting function, rather than by two integrated counting functions as in the classical Nevanlinna theory. For instance, we show that, for almost all Gaussian entire functions f ω and for any ϵ > 0, there is r 0 such that, for $r \\\\gt r_0$ , \\\\begin{equation*} T(r, f) \\\\le N(r,0, f_\\\\omega)+\\\\left(\\\\tfrac12+\\\\epsilon\\\\right) \\\\log T(r, f). \\\\end{equation*}\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091523000639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0013091523000639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$f(z)=\sum\limits_{j=0}^{\infty} a_j z^j$为超越整函数,$f_\omega(z)=\sum\limits_{j=0}^{\infty}\chi_j(\omega) a_j z^j$为随机整函数,其中$\chi_j(\omega)$为定义在概率空间$(\Omega, \mathcal{F}, \mu)$上的独立同分布随机变量。本文首先定义了一类随机整函数,其中包括高斯整函数、Rademacher整函数和Steinhaus整函数。我们证明了,对于几乎所有族中的函数和对于任意常数C >1、存在一个常数$r_0=r_0(\omega)$和一个有限对数测度集$E\subset [e, \infty)$,使得对于$r \gt r_0$和$r\notin E$, \begin{equation*} |\log M(r, f)- N(r,0, f_\omega)|\le (C/A)^{\frac1{B}}\,\log^{\frac1{B}}\,\log M(r,f) +\log\,\log M(r, f), \qquad a.s. \end{equation*}其中$A, B$为常数,$M(r, f)$为最大模量,$N(r, 0, f)$为f的积分计数函数。作为我们主要结果的副产品,我们证明了随机整函数的Nevanlinna第二主要定理。因此,族中几乎所有函数的特征函数都由一个积分计数函数限定,而不是像经典Nevanlinna理论那样由两个积分计数函数限定。例如,我们证明,对于几乎所有的高斯整函数f ω和任意的λ >0,有r 0,对于$r \gt r_0$, \begin{equation*} T(r, f) \le N(r,0, f_\omega)+\left(\tfrac12+\epsilon\right) \log T(r, f). \end{equation*}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inequalities Concerning Maximum Modulus and Zeros of Random Entire Functions
Abstract Let $f(z)=\sum\limits_{j=0}^{\infty} a_j z^j$ be a transcendental entire function and let $f_\omega(z)=\sum\limits_{j=0}^{\infty}\chi_j(\omega) a_j z^j$ be a random entire function, where $\chi_j(\omega)$ are independent and identically distributed random variables defined on a probability space $(\Omega, \mathcal{F}, \mu)$ . In this paper, we first define a family of random entire functions, which includes Gaussian, Rademacher and Steinhaus entire functions. We prove that, for almost all functions in the family and for any constant C > 1, there exist a constant $r_0=r_0(\omega)$ and a set $E\subset [e, \infty)$ of finite logarithmic measure such that, for $r \gt r_0$ and $r\notin E$ , \begin{equation*} |\log M(r, f)- N(r,0, f_\omega)|\le (C/A)^{\frac1{B}}\,\log^{\frac1{B}}\,\log M(r,f) +\log\,\log M(r, f), \qquad a.s. \end{equation*} where $A, B$ are constants, $M(r, f)$ is the maximum modulus and $N(r, 0, f)$ is the integrated zero-counting function of f . As a by-product of our main results, we prove Nevanlinna’s second main theorem for random entire functions. Thus, the characteristic function of almost all functions in the family is bounded above by an integrated counting function, rather than by two integrated counting functions as in the classical Nevanlinna theory. For instance, we show that, for almost all Gaussian entire functions f ω and for any ϵ > 0, there is r 0 such that, for $r \gt r_0$ , \begin{equation*} T(r, f) \le N(r,0, f_\omega)+\left(\tfrac12+\epsilon\right) \log T(r, f). \end{equation*}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信