None Xue Zhang, None Dan Zhang, None Lei Huo, None Xin Zhou, None Jia Zhang, None Min Li, None Dongming Su, None Peng Sun, None Fang Chen, None Xiubin Liang
{"title":"α-ENaC上调可诱导胰腺β细胞功能障碍、内质网应激和SIRT2降解","authors":"None Xue Zhang, None Dan Zhang, None Lei Huo, None Xin Zhou, None Jia Zhang, None Min Li, None Dongming Su, None Peng Sun, None Fang Chen, None Xiubin Liang","doi":"10.7555/jbr.37.20230128","DOIUrl":null,"url":null,"abstract":"Islet beta cells (β-cells) produce insulin in response to high blood glucose levels, which is essential for preserving glucose homeostasis. Voltage-gated ion channels in β-cells, including Na<sup>+</sup>, K<sup>+</sup>, and Ca<sup>2+</sup> channels, aid in the release of insulin. Epithelial sodium channel alpha subunit (α-ENaC), a voltage-independent sodium ion channel, is also expressed in human pancreatic endocrine cells. However, there has not been much study done on ENaC's function in β-cells. In the current work, we found that human pancreatic glandule and pancreatic islet β-cells expressed α-ENaC. In the pancreas of <i>db/db</i> mice, high-fat diet-induced obesity, and in mouse islet β-cells (Min6 cells) treated with palmitate, α-ENaC expression was increased. When α-ENaC was overexpressed in Min6 cells, insulin content and glucose-induced insulin secretion were markedly reduced. On the other hand, palmitate injured islet β-cells, suppressed insulin synthesis and secretion, and increased α-ENaC expression in Min6 cells. However, α-ENaC knockout (<i>Scnn1a</i><sup>-/-</sup>) in Min6 cells attenuated β-cells disorder induced by palmitate. Furthermore, we revealed that α-ENaC regulated the ubiquitylation and degradation of Sirtuin 2 in β-cells. α-ENaC also modulated β-cell function related to inositol-requiring enzyme 1alpha/X-box-binding protein-1 (IRE1α/XBP1) and protein kinase RNA-like endoplasmic reticulum kinase/C/EBP homologous protein (PERK/CHOP) endoplasmic reticulum stress pathways. These results suggest that α-ENaC plays a novel role in insulin synthesis and secretion in β-cells. Upregulation of α-ENaC promotes islet β-cell dysfunction. As a result, α-ENaC is a key regulator involved in islet β-cell damage and a potential therapeutic target for type 2 diabetes mellitus.","PeriodicalId":100807,"journal":{"name":"Journal of Nanjing Medical University","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upregulation of α-ENaC induces pancreatic β-cell dysfunction, ER stress, and SIRT2 degradation\",\"authors\":\"None Xue Zhang, None Dan Zhang, None Lei Huo, None Xin Zhou, None Jia Zhang, None Min Li, None Dongming Su, None Peng Sun, None Fang Chen, None Xiubin Liang\",\"doi\":\"10.7555/jbr.37.20230128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Islet beta cells (β-cells) produce insulin in response to high blood glucose levels, which is essential for preserving glucose homeostasis. Voltage-gated ion channels in β-cells, including Na<sup>+</sup>, K<sup>+</sup>, and Ca<sup>2+</sup> channels, aid in the release of insulin. Epithelial sodium channel alpha subunit (α-ENaC), a voltage-independent sodium ion channel, is also expressed in human pancreatic endocrine cells. However, there has not been much study done on ENaC's function in β-cells. In the current work, we found that human pancreatic glandule and pancreatic islet β-cells expressed α-ENaC. In the pancreas of <i>db/db</i> mice, high-fat diet-induced obesity, and in mouse islet β-cells (Min6 cells) treated with palmitate, α-ENaC expression was increased. When α-ENaC was overexpressed in Min6 cells, insulin content and glucose-induced insulin secretion were markedly reduced. On the other hand, palmitate injured islet β-cells, suppressed insulin synthesis and secretion, and increased α-ENaC expression in Min6 cells. However, α-ENaC knockout (<i>Scnn1a</i><sup>-/-</sup>) in Min6 cells attenuated β-cells disorder induced by palmitate. Furthermore, we revealed that α-ENaC regulated the ubiquitylation and degradation of Sirtuin 2 in β-cells. α-ENaC also modulated β-cell function related to inositol-requiring enzyme 1alpha/X-box-binding protein-1 (IRE1α/XBP1) and protein kinase RNA-like endoplasmic reticulum kinase/C/EBP homologous protein (PERK/CHOP) endoplasmic reticulum stress pathways. These results suggest that α-ENaC plays a novel role in insulin synthesis and secretion in β-cells. Upregulation of α-ENaC promotes islet β-cell dysfunction. As a result, α-ENaC is a key regulator involved in islet β-cell damage and a potential therapeutic target for type 2 diabetes mellitus.\",\"PeriodicalId\":100807,\"journal\":{\"name\":\"Journal of Nanjing Medical University\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanjing Medical University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7555/jbr.37.20230128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanjing Medical University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7555/jbr.37.20230128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upregulation of α-ENaC induces pancreatic β-cell dysfunction, ER stress, and SIRT2 degradation
Islet beta cells (β-cells) produce insulin in response to high blood glucose levels, which is essential for preserving glucose homeostasis. Voltage-gated ion channels in β-cells, including Na+, K+, and Ca2+ channels, aid in the release of insulin. Epithelial sodium channel alpha subunit (α-ENaC), a voltage-independent sodium ion channel, is also expressed in human pancreatic endocrine cells. However, there has not been much study done on ENaC's function in β-cells. In the current work, we found that human pancreatic glandule and pancreatic islet β-cells expressed α-ENaC. In the pancreas of db/db mice, high-fat diet-induced obesity, and in mouse islet β-cells (Min6 cells) treated with palmitate, α-ENaC expression was increased. When α-ENaC was overexpressed in Min6 cells, insulin content and glucose-induced insulin secretion were markedly reduced. On the other hand, palmitate injured islet β-cells, suppressed insulin synthesis and secretion, and increased α-ENaC expression in Min6 cells. However, α-ENaC knockout (Scnn1a-/-) in Min6 cells attenuated β-cells disorder induced by palmitate. Furthermore, we revealed that α-ENaC regulated the ubiquitylation and degradation of Sirtuin 2 in β-cells. α-ENaC also modulated β-cell function related to inositol-requiring enzyme 1alpha/X-box-binding protein-1 (IRE1α/XBP1) and protein kinase RNA-like endoplasmic reticulum kinase/C/EBP homologous protein (PERK/CHOP) endoplasmic reticulum stress pathways. These results suggest that α-ENaC plays a novel role in insulin synthesis and secretion in β-cells. Upregulation of α-ENaC promotes islet β-cell dysfunction. As a result, α-ENaC is a key regulator involved in islet β-cell damage and a potential therapeutic target for type 2 diabetes mellitus.