{"title":"磁絮凝Fe3O4纳米颗粒与壳聚糖复合高效收获绿色微藻细胞","authors":"Sifen Liu, Suping Fu, Zhongjie Wen, Xiang Wang, Tianjiu Jiang, Hongye Li","doi":"10.25165/j.ijabe.20231604.7809","DOIUrl":null,"url":null,"abstract":"Microalgae harvesting remains a challenging step in microalgae industrialization, thereby provoking the necessity to explore sustainable and economically feasible approaches. This research investigated the use of magnetic flocculated nanoparticles in the harvesting of the common microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. The results showed that magnetic flocculated nanoparticles efficiently adsorbed negatively charged microalgae cells, and a magnetic field could adsorb the magnetic flocculated nanoparticles, thereby harvesting the microalgae cells. Harvesting efficiency was remarkably increased at the optimum magnetic field strength of 0.5 T with the magnetic flocculated nanoparticles at 0.738 g/L, and microalgae broth at pH 9.0, whereas the recovery rates of both C. pyrenoidosa and S. obliquus were around 97% and the sedimentation speed of both was above 2.63 cm/min. This study exemplified the magnetic flocculated nanoparticles-based approach to effectively harvest the microalgae cells. Keywords: magnetic flocculated nanoparticles, Chlorella pyrenoidosa, Scenedesmus obliquus, recovery rate, sedimentation speed DOI: 10.25165/j.ijabe.20231604.7809 Citation: Liu S F, Fu S P, Wen Z J, Wang X, Jiang T J, Li H Y. Efficient harvesting of green microalgae cells by magnetic flocculated Fe3O4 nanoparticles combined with chitosan. Int J Agric & Biol Eng, 2023; 16(4): 215-221","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"72 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient harvesting of green microalgae cells by magnetic flocculated Fe3O4 nanoparticles combined with chitosan\",\"authors\":\"Sifen Liu, Suping Fu, Zhongjie Wen, Xiang Wang, Tianjiu Jiang, Hongye Li\",\"doi\":\"10.25165/j.ijabe.20231604.7809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microalgae harvesting remains a challenging step in microalgae industrialization, thereby provoking the necessity to explore sustainable and economically feasible approaches. This research investigated the use of magnetic flocculated nanoparticles in the harvesting of the common microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. The results showed that magnetic flocculated nanoparticles efficiently adsorbed negatively charged microalgae cells, and a magnetic field could adsorb the magnetic flocculated nanoparticles, thereby harvesting the microalgae cells. Harvesting efficiency was remarkably increased at the optimum magnetic field strength of 0.5 T with the magnetic flocculated nanoparticles at 0.738 g/L, and microalgae broth at pH 9.0, whereas the recovery rates of both C. pyrenoidosa and S. obliquus were around 97% and the sedimentation speed of both was above 2.63 cm/min. This study exemplified the magnetic flocculated nanoparticles-based approach to effectively harvest the microalgae cells. Keywords: magnetic flocculated nanoparticles, Chlorella pyrenoidosa, Scenedesmus obliquus, recovery rate, sedimentation speed DOI: 10.25165/j.ijabe.20231604.7809 Citation: Liu S F, Fu S P, Wen Z J, Wang X, Jiang T J, Li H Y. Efficient harvesting of green microalgae cells by magnetic flocculated Fe3O4 nanoparticles combined with chitosan. Int J Agric & Biol Eng, 2023; 16(4): 215-221\",\"PeriodicalId\":13895,\"journal\":{\"name\":\"International Journal of Agricultural and Biological Engineering\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25165/j.ijabe.20231604.7809\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25165/j.ijabe.20231604.7809","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Efficient harvesting of green microalgae cells by magnetic flocculated Fe3O4 nanoparticles combined with chitosan
Microalgae harvesting remains a challenging step in microalgae industrialization, thereby provoking the necessity to explore sustainable and economically feasible approaches. This research investigated the use of magnetic flocculated nanoparticles in the harvesting of the common microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. The results showed that magnetic flocculated nanoparticles efficiently adsorbed negatively charged microalgae cells, and a magnetic field could adsorb the magnetic flocculated nanoparticles, thereby harvesting the microalgae cells. Harvesting efficiency was remarkably increased at the optimum magnetic field strength of 0.5 T with the magnetic flocculated nanoparticles at 0.738 g/L, and microalgae broth at pH 9.0, whereas the recovery rates of both C. pyrenoidosa and S. obliquus were around 97% and the sedimentation speed of both was above 2.63 cm/min. This study exemplified the magnetic flocculated nanoparticles-based approach to effectively harvest the microalgae cells. Keywords: magnetic flocculated nanoparticles, Chlorella pyrenoidosa, Scenedesmus obliquus, recovery rate, sedimentation speed DOI: 10.25165/j.ijabe.20231604.7809 Citation: Liu S F, Fu S P, Wen Z J, Wang X, Jiang T J, Li H Y. Efficient harvesting of green microalgae cells by magnetic flocculated Fe3O4 nanoparticles combined with chitosan. Int J Agric & Biol Eng, 2023; 16(4): 215-221
期刊介绍:
International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.