{"title":"非模可调群的相干框架的过完备性","authors":"","doi":"10.4310/arkiv.2023.v61.n2.a2","DOIUrl":null,"url":null,"abstract":". This paper concerns the overcompleteness of coherent frames for amenable unimodular groups. It is shown that for coherent frames associated with an integrable vector a set of positive Beurling density can be removed yet still leave a frame. The obtained results extend various theorems of [J. Fourier Anal. Appl., 12(3):307-344, 2006] to frames with non-Abelian index sets.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcompleteness of coherent frames for unimodular amenable groups\",\"authors\":\"\",\"doi\":\"10.4310/arkiv.2023.v61.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper concerns the overcompleteness of coherent frames for amenable unimodular groups. It is shown that for coherent frames associated with an integrable vector a set of positive Beurling density can be removed yet still leave a frame. The obtained results extend various theorems of [J. Fourier Anal. Appl., 12(3):307-344, 2006] to frames with non-Abelian index sets.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n2.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n2.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Overcompleteness of coherent frames for unimodular amenable groups
. This paper concerns the overcompleteness of coherent frames for amenable unimodular groups. It is shown that for coherent frames associated with an integrable vector a set of positive Beurling density can be removed yet still leave a frame. The obtained results extend various theorems of [J. Fourier Anal. Appl., 12(3):307-344, 2006] to frames with non-Abelian index sets.