{"title":"光滑投影曲面上点的Hilbert格式及有限群作用下的广义Kummer变分","authors":"Sailun Zhan","doi":"10.4310/arkiv.2023.v61.n2.a9","DOIUrl":null,"url":null,"abstract":"G\\\"ottsche and Soergel gave formulas for the Hodge numbers of Hilbert schemes of points on a smooth algebraic surface and the Hodge numbers of generalized Kummer varieties. When a smooth projective surface $S$ admits an action by a finite group $G$, we describe the action of $G$ on the Hodge pieces via point counting. Each element of $G$ gives a trace on $\\sum_{n=0}^{\\infty}\\sum_{i=0}^{\\infty}(-1)^{i}H^{i}(S^{[n]},\\mathbb{C})q^{n}$. In the case that $S$ is a K3 surface or an abelian surface, the resulting generating functions give some interesting modular forms when $G$ acts faithfully and symplectically on $S$.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hilbert schemes of points on smooth projective surfaces and generalized Kummer varieties with finite group actions\",\"authors\":\"Sailun Zhan\",\"doi\":\"10.4310/arkiv.2023.v61.n2.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"G\\\\\\\"ottsche and Soergel gave formulas for the Hodge numbers of Hilbert schemes of points on a smooth algebraic surface and the Hodge numbers of generalized Kummer varieties. When a smooth projective surface $S$ admits an action by a finite group $G$, we describe the action of $G$ on the Hodge pieces via point counting. Each element of $G$ gives a trace on $\\\\sum_{n=0}^{\\\\infty}\\\\sum_{i=0}^{\\\\infty}(-1)^{i}H^{i}(S^{[n]},\\\\mathbb{C})q^{n}$. In the case that $S$ is a K3 surface or an abelian surface, the resulting generating functions give some interesting modular forms when $G$ acts faithfully and symplectically on $S$.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n2.a9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n2.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hilbert schemes of points on smooth projective surfaces and generalized Kummer varieties with finite group actions
G\"ottsche and Soergel gave formulas for the Hodge numbers of Hilbert schemes of points on a smooth algebraic surface and the Hodge numbers of generalized Kummer varieties. When a smooth projective surface $S$ admits an action by a finite group $G$, we describe the action of $G$ on the Hodge pieces via point counting. Each element of $G$ gives a trace on $\sum_{n=0}^{\infty}\sum_{i=0}^{\infty}(-1)^{i}H^{i}(S^{[n]},\mathbb{C})q^{n}$. In the case that $S$ is a K3 surface or an abelian surface, the resulting generating functions give some interesting modular forms when $G$ acts faithfully and symplectically on $S$.