Mahmoud Elkazzaz, Amr Ahmed, Yousry Esam Eldin Abo Amer, Tamer Haydara, Wafa Ali ELtayb, Mohammad Shahbaz Khan, Kunal Bhattacharya, Salma Alkhammash, Hadeer Mattar, Saba Beigh, Mohammed F Abo El Magd, Abdullah Haikal, Islem Abid, Amr S Abouzied, Israa M Shamkh
{"title":"新发现STRA - 6维生素A受体作为新型COVID-19结合受体","authors":"Mahmoud Elkazzaz, Amr Ahmed, Yousry Esam Eldin Abo Amer, Tamer Haydara, Wafa Ali ELtayb, Mohammad Shahbaz Khan, Kunal Bhattacharya, Salma Alkhammash, Hadeer Mattar, Saba Beigh, Mohammed F Abo El Magd, Abdullah Haikal, Islem Abid, Amr S Abouzied, Israa M Shamkh","doi":"10.5530/ijper.57.4.126","DOIUrl":null,"url":null,"abstract":"Abstract: A global pandemic of pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, at the end of 2019. Although, the ACE2 receptor has been demonstrated to be the main entry receptor of COVID-19, but our docking analysis, predicted and discovered a novel receptor termed STRA 6 that may play a critical role in the pathogenicity of COVID-19. STRA6 receptor expressed in many organs and immune cells, upregulated by retinoic acid jm6 (STRA 6) was the first protein to be identified in a novel category of proteins, cytokine signaling transporters, due to its ability to function as both a cell surface receptor and a membrane protein that binds to retinol binding protein facilitating cellular uptake of retinol. The primary ligand of STRA6 (vitamin/retinol) was shown to be drastically reduced during COVID-19 infection, which agrees with our findings. We analyze the STRA6 and ACE2 receptor networks to predict the specific association among certain other proteins which might rely on similar functionality. Molecular docking showed a high affinity between the Spike protein with STRA6, the docking score of COVID-19 spike protein with STRA6 (-354.68) kcal/mol was higher than the docking score of spike protein with ACE2 (-341.21) kcal/mol. Results of MD simulations revealed significant stability of the spike protein with STRA6 up to 100 ns. SARS-CoV-2 spike protein binds strongly and directly to STRA6. Which are highly expressed in Lymphatic system and Immune cells. This study paves the way towards understanding the complex mechanism of existing of covid-19 infection complications such as immune suppression and ineffective RIG-I pathway. Restoring the balance between the STRA6 and ACE2 in the context of spike protein RBD may be promising target in SARS CoV-2 Pathogenesis and may reveal new drug targets for new variants of COVID-19. Keywords: COVID-19, STRA6, ACE2, Molecular docking.","PeriodicalId":13407,"journal":{"name":"Indian Journal of Pharmaceutical Education and Research","volume":"28 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In silico Discovering STRA 6 Vitamin A Receptor, as a Novel Binding Receptor of COVID-19\",\"authors\":\"Mahmoud Elkazzaz, Amr Ahmed, Yousry Esam Eldin Abo Amer, Tamer Haydara, Wafa Ali ELtayb, Mohammad Shahbaz Khan, Kunal Bhattacharya, Salma Alkhammash, Hadeer Mattar, Saba Beigh, Mohammed F Abo El Magd, Abdullah Haikal, Islem Abid, Amr S Abouzied, Israa M Shamkh\",\"doi\":\"10.5530/ijper.57.4.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: A global pandemic of pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, at the end of 2019. Although, the ACE2 receptor has been demonstrated to be the main entry receptor of COVID-19, but our docking analysis, predicted and discovered a novel receptor termed STRA 6 that may play a critical role in the pathogenicity of COVID-19. STRA6 receptor expressed in many organs and immune cells, upregulated by retinoic acid jm6 (STRA 6) was the first protein to be identified in a novel category of proteins, cytokine signaling transporters, due to its ability to function as both a cell surface receptor and a membrane protein that binds to retinol binding protein facilitating cellular uptake of retinol. The primary ligand of STRA6 (vitamin/retinol) was shown to be drastically reduced during COVID-19 infection, which agrees with our findings. We analyze the STRA6 and ACE2 receptor networks to predict the specific association among certain other proteins which might rely on similar functionality. Molecular docking showed a high affinity between the Spike protein with STRA6, the docking score of COVID-19 spike protein with STRA6 (-354.68) kcal/mol was higher than the docking score of spike protein with ACE2 (-341.21) kcal/mol. Results of MD simulations revealed significant stability of the spike protein with STRA6 up to 100 ns. SARS-CoV-2 spike protein binds strongly and directly to STRA6. Which are highly expressed in Lymphatic system and Immune cells. This study paves the way towards understanding the complex mechanism of existing of covid-19 infection complications such as immune suppression and ineffective RIG-I pathway. Restoring the balance between the STRA6 and ACE2 in the context of spike protein RBD may be promising target in SARS CoV-2 Pathogenesis and may reveal new drug targets for new variants of COVID-19. Keywords: COVID-19, STRA6, ACE2, Molecular docking.\",\"PeriodicalId\":13407,\"journal\":{\"name\":\"Indian Journal of Pharmaceutical Education and Research\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pharmaceutical Education and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5530/ijper.57.4.126\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pharmaceutical Education and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5530/ijper.57.4.126","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
In silico Discovering STRA 6 Vitamin A Receptor, as a Novel Binding Receptor of COVID-19
Abstract: A global pandemic of pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, at the end of 2019. Although, the ACE2 receptor has been demonstrated to be the main entry receptor of COVID-19, but our docking analysis, predicted and discovered a novel receptor termed STRA 6 that may play a critical role in the pathogenicity of COVID-19. STRA6 receptor expressed in many organs and immune cells, upregulated by retinoic acid jm6 (STRA 6) was the first protein to be identified in a novel category of proteins, cytokine signaling transporters, due to its ability to function as both a cell surface receptor and a membrane protein that binds to retinol binding protein facilitating cellular uptake of retinol. The primary ligand of STRA6 (vitamin/retinol) was shown to be drastically reduced during COVID-19 infection, which agrees with our findings. We analyze the STRA6 and ACE2 receptor networks to predict the specific association among certain other proteins which might rely on similar functionality. Molecular docking showed a high affinity between the Spike protein with STRA6, the docking score of COVID-19 spike protein with STRA6 (-354.68) kcal/mol was higher than the docking score of spike protein with ACE2 (-341.21) kcal/mol. Results of MD simulations revealed significant stability of the spike protein with STRA6 up to 100 ns. SARS-CoV-2 spike protein binds strongly and directly to STRA6. Which are highly expressed in Lymphatic system and Immune cells. This study paves the way towards understanding the complex mechanism of existing of covid-19 infection complications such as immune suppression and ineffective RIG-I pathway. Restoring the balance between the STRA6 and ACE2 in the context of spike protein RBD may be promising target in SARS CoV-2 Pathogenesis and may reveal new drug targets for new variants of COVID-19. Keywords: COVID-19, STRA6, ACE2, Molecular docking.
期刊介绍:
The official journal of Association of Pharmaceutical Teachers of India (APTI) and is being published since 1967. IJPER, a quarterly publication devoted to publish reviews and research articles in pharmacy and the related disciplines of Pharmaceutical education. It mainly covers the articles of special interest, covering the areas of Pharmaceutical research, teaching and learning, laboratory innovations, education technology, curriculum design, examination reforms, training and other related issues. It encourages debates and discussions on the issues of vital importance to Pharmaceutical education and research. The goal of the journal is to provide the quality publications and publish most important research and review articles in the field of drug development and pharmaceutical education. It is circulated and referred by more than 6000 teachers, 40,000 students and over 1000 professionals working in Pharmaceutical industries, Regulatory departments, hospitals etc.