识别动态立陶宛语言手势

Arnas Karmonas, Andrius Katkevičius
{"title":"识别动态立陶宛语言手势","authors":"Arnas Karmonas, Andrius Katkevičius","doi":"10.3846/mla.2023.18834","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for automated Lithuanian hands gestures data collection and for Lithuanian hands gestures classification. The dataset of 1100 samples was collected for 10 different classes of Lithuanian hands gesture. The features of hands gestures were extracted with CNN network. The classification was made with LSTM network. The trained LSTM network classified the Lithuanian hands gestures with 85% accuracy.","PeriodicalId":30324,"journal":{"name":"Mokslas Lietuvos Ateitis","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RECOGNITION OF DYNAMIC LITHUANIAN LANGUAGE GESTURES\",\"authors\":\"Arnas Karmonas, Andrius Katkevičius\",\"doi\":\"10.3846/mla.2023.18834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for automated Lithuanian hands gestures data collection and for Lithuanian hands gestures classification. The dataset of 1100 samples was collected for 10 different classes of Lithuanian hands gesture. The features of hands gestures were extracted with CNN network. The classification was made with LSTM network. The trained LSTM network classified the Lithuanian hands gestures with 85% accuracy.\",\"PeriodicalId\":30324,\"journal\":{\"name\":\"Mokslas Lietuvos Ateitis\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mokslas Lietuvos Ateitis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mla.2023.18834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mokslas Lietuvos Ateitis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mla.2023.18834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种立陶宛语手势数据自动采集和立陶宛语手势分类的方法。1100个样本的数据集收集了10个不同类别的立陶宛手势。利用CNN网络提取手势特征。采用LSTM网络进行分类。经过训练的LSTM网络对立陶宛手势的分类准确率为85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RECOGNITION OF DYNAMIC LITHUANIAN LANGUAGE GESTURES
This paper proposes a method for automated Lithuanian hands gestures data collection and for Lithuanian hands gestures classification. The dataset of 1100 samples was collected for 10 different classes of Lithuanian hands gesture. The features of hands gestures were extracted with CNN network. The classification was made with LSTM network. The trained LSTM network classified the Lithuanian hands gestures with 85% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信