高频率下前导-滞后套利的盈利能力

IF 6.9 2区 经济学 Q1 ECONOMICS
Cédric Poutré , Georges Dionne , Gabriel Yergeau
{"title":"高频率下前导-滞后套利的盈利能力","authors":"Cédric Poutré ,&nbsp;Georges Dionne ,&nbsp;Gabriel Yergeau","doi":"10.1016/j.ijforecast.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Any lead–lag effect in an asset pair implies that future returns on the lagging asset have the potential to be predicted from past and present prices of the leader, thus creating statistical arbitrage opportunities. We utilize robust lead–lag indicators to uncover the origin of price discovery, and we propose an econometric model exploiting that effect with level 1 data of limit order books (LOBs). We also develop a high-frequency trading strategy based on the model predictions to capture arbitrage opportunities. The framework is then evaluated on six months of DAX 30 cross-listed stocks’ LOB data obtained from three European exchanges in 2013: Xetra, Chi-X, and BATS. We show that a high-frequency trader can profit from lead–lag relationships because of predictability, even when trading costs, latency, and execution-related risks are considered.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The profitability of lead–lag arbitrage at high frequency\",\"authors\":\"Cédric Poutré ,&nbsp;Georges Dionne ,&nbsp;Gabriel Yergeau\",\"doi\":\"10.1016/j.ijforecast.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Any lead–lag effect in an asset pair implies that future returns on the lagging asset have the potential to be predicted from past and present prices of the leader, thus creating statistical arbitrage opportunities. We utilize robust lead–lag indicators to uncover the origin of price discovery, and we propose an econometric model exploiting that effect with level 1 data of limit order books (LOBs). We also develop a high-frequency trading strategy based on the model predictions to capture arbitrage opportunities. The framework is then evaluated on six months of DAX 30 cross-listed stocks’ LOB data obtained from three European exchanges in 2013: Xetra, Chi-X, and BATS. We show that a high-frequency trader can profit from lead–lag relationships because of predictability, even when trading costs, latency, and execution-related risks are considered.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207023000936\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023000936","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

资产对中的任何领先-滞后效应都意味着,滞后资产的未来收益有可能从领先资产过去和现在的价格中预测出来,从而创造统计套利机会。我们利用稳健的领先滞后指标来揭示价格发现的起源,并利用限价订单簿(LOB)的一级数据提出了一个利用这种效应的计量经济学模型。我们还根据模型预测开发了一种高频交易策略,以捕捉套利机会。然后,我们利用 2013 年从三家欧洲交易所获得的六个月 DAX 30 交叉上市股票限价订单簿数据对该框架进行了评估:Xetra、Chi-X 和 BATS。我们的研究表明,即使考虑到交易成本、延迟和执行相关风险,高频交易者也能从领先-滞后关系中获利,因为这种关系具有可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The profitability of lead–lag arbitrage at high frequency

Any lead–lag effect in an asset pair implies that future returns on the lagging asset have the potential to be predicted from past and present prices of the leader, thus creating statistical arbitrage opportunities. We utilize robust lead–lag indicators to uncover the origin of price discovery, and we propose an econometric model exploiting that effect with level 1 data of limit order books (LOBs). We also develop a high-frequency trading strategy based on the model predictions to capture arbitrage opportunities. The framework is then evaluated on six months of DAX 30 cross-listed stocks’ LOB data obtained from three European exchanges in 2013: Xetra, Chi-X, and BATS. We show that a high-frequency trader can profit from lead–lag relationships because of predictability, even when trading costs, latency, and execution-related risks are considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信