二元五次方程的热带不变量与皮卡德曲线的约化类型

Pub Date : 2023-11-06 DOI:10.1017/s0017089523000344
Paul Alexander Helminck, Yassine El Maazouz, Enis Kaya
{"title":"二元五次方程的热带不变量与皮卡德曲线的约化类型","authors":"Paul Alexander Helminck, Yassine El Maazouz, Enis Kaya","doi":"10.1017/s0017089523000344","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we express the reduction types of Picard curves in terms of tropical invariants associated with binary quintics. We also give a general framework for tropical invariants associated with group actions on arbitrary varieties. The problem of finding tropical invariants for binary forms fits in this general framework by mapping the space of binary forms to symmetrized versions of the Deligne–Mumford compactification $\\overline{M}_{0,n}$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tropical invariants for binary quintics and reduction types of Picard curves\",\"authors\":\"Paul Alexander Helminck, Yassine El Maazouz, Enis Kaya\",\"doi\":\"10.1017/s0017089523000344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we express the reduction types of Picard curves in terms of tropical invariants associated with binary quintics. We also give a general framework for tropical invariants associated with group actions on arbitrary varieties. The problem of finding tropical invariants for binary forms fits in this general framework by mapping the space of binary forms to symmetrized versions of the Deligne–Mumford compactification $\\\\overline{M}_{0,n}$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089523000344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0017089523000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文用与二元五项相关的热带不变量来表示皮卡德曲线的约简类型。我们还给出了与任意变异上的群作用相关的热带不变量的一般框架。通过将二进制形式的空间映射到delignee - mumford紧化$\overline{M}_{0,n}$的对称形式,找到二进制形式的热带不变量的问题就符合这个一般框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Tropical invariants for binary quintics and reduction types of Picard curves
Abstract In this paper, we express the reduction types of Picard curves in terms of tropical invariants associated with binary quintics. We also give a general framework for tropical invariants associated with group actions on arbitrary varieties. The problem of finding tropical invariants for binary forms fits in this general framework by mapping the space of binary forms to symmetrized versions of the Deligne–Mumford compactification $\overline{M}_{0,n}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信