局部有限图上的一些整体存在性结果

IF 0.5 4区 数学 Q3 MATHEMATICS
SHOUDONG MAN, GUOQING ZHANG
{"title":"局部有限图上的一些整体存在性结果","authors":"SHOUDONG MAN, GUOQING ZHANG","doi":"10.1017/s1446788723000149","DOIUrl":null,"url":null,"abstract":"Abstract Let $G=(V, E)$ be a locally finite graph with the vertex set V and the edge set E , where both V and E are infinite sets. By dividing the graph G into a sequence of finite subgraphs, the existence of a sequence of local solutions to several equations involving the p -Laplacian and the poly-Laplacian systems is confirmed on each subgraph, and the global existence for each equation on graph G is derived by the convergence of these local solutions. Such results extend the recent work of Grigor’yan, Lin and Yang [ J. Differential Equations , 261 (2016), 4924–4943; Rev. Mat. Complut. , 35 (2022), 791–813]. The method in this paper also provides an idea for investigating similar problems on infinite graphs.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME GLOBAL EXISTENCE RESULTS ON LOCALLY FINITE GRAPHS\",\"authors\":\"SHOUDONG MAN, GUOQING ZHANG\",\"doi\":\"10.1017/s1446788723000149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $G=(V, E)$ be a locally finite graph with the vertex set V and the edge set E , where both V and E are infinite sets. By dividing the graph G into a sequence of finite subgraphs, the existence of a sequence of local solutions to several equations involving the p -Laplacian and the poly-Laplacian systems is confirmed on each subgraph, and the global existence for each equation on graph G is derived by the convergence of these local solutions. Such results extend the recent work of Grigor’yan, Lin and Yang [ J. Differential Equations , 261 (2016), 4924–4943; Rev. Mat. Complut. , 35 (2022), 791–813]. The method in this paper also provides an idea for investigating similar problems on infinite graphs.\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000149\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1446788723000149","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要设$G=(V, E)$是一个具有顶点集V和边集E的局部有限图,其中V和E都是无限集。通过将图G划分为一个有限子图序列,证实了在每个子图上包含p -拉普拉斯系统和多拉普拉斯系统的若干方程的一个局部解序列的存在性,并通过这些局部解的收敛性推导了图G上每个方程的全局存在性。这些结果扩展了Grigor’yan, Lin和Yang最近的工作[j] .微分方程,261 (2016),4924-4943;马太·康福尔牧师。生态学报,35(2022),791-813。本文的方法也为研究无穷图上的类似问题提供了一个思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME GLOBAL EXISTENCE RESULTS ON LOCALLY FINITE GRAPHS
Abstract Let $G=(V, E)$ be a locally finite graph with the vertex set V and the edge set E , where both V and E are infinite sets. By dividing the graph G into a sequence of finite subgraphs, the existence of a sequence of local solutions to several equations involving the p -Laplacian and the poly-Laplacian systems is confirmed on each subgraph, and the global existence for each equation on graph G is derived by the convergence of these local solutions. Such results extend the recent work of Grigor’yan, Lin and Yang [ J. Differential Equations , 261 (2016), 4924–4943; Rev. Mat. Complut. , 35 (2022), 791–813]. The method in this paper also provides an idea for investigating similar problems on infinite graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信