{"title":"接近熔点的冰表面:对对流层冰的影响","authors":"","doi":"10.24425/ppr.2021.137144","DOIUrl":null,"url":null,"abstract":": Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at –5℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at –5℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases.","PeriodicalId":49682,"journal":{"name":"Polish Polar Research","volume":"2008 26","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ice surface near melting point: Effects on the tropospheric ice\",\"authors\":\"\",\"doi\":\"10.24425/ppr.2021.137144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at –5℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at –5℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases.\",\"PeriodicalId\":49682,\"journal\":{\"name\":\"Polish Polar Research\",\"volume\":\"2008 26\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Polar Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ppr.2021.137144\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Polar Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ppr.2021.137144","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
Ice surface near melting point: Effects on the tropospheric ice
: Atmospheric gases and chemical impurities can be stored and chemically transformed in the tropospheric ice. Impurities are rejected during freezing of the ice to the grain boundaries, free ice surfaces or inclusions. Surface snow and tropospheric ice, however, may be exposed to high temperatures and, eventually, the gases and chemical impurities can be released into the environment. It is important to study the surface structure and transport mechanisms at temperatures near the melting point because the location of impurities and their interactions with water molecules in the ice are not yet sufficiently explained. In this work, the evolution of a scratch on the bicrystalline ice surface was studied at –5℃. The surface transport mechanisms near the melting point were studied and, as a consequence, the surface structure could be determined. An ice sample was kept immersed in ultra-pure silicone oil to prevent evaporation and, thus, isolate the effect of surface diffusion. The ice sample was made with water with chemical conditions similar to the water of polar ice sheets. Photographs of the scratch were taken periodically, for approximately 50 hours, using a photographic camera coupled to an optical microscope. From these images, the evolution of the width of the scratch was studied and the surface diffusion was the dominant transport mechanism in the experiment. Finally, the ice surface self-diffusion coefficient at –5℃ was determined and it was very similar to the super-cooled water diffusion coefficient. A liquid-like behavior of ice surfaces near the melting point was found and it could have a strong influence on the reaction rates with atmospheric gases.
期刊介绍:
The quarterly Polish Polar Research edited by the Committee on Polar Research of the Polish Academy of Sciences is an international journal publishing original research articles presenting the results of studies carried out in polar regions.
All papers are peer-reviewed and published in English.
The Editorial Advisory Board includes renowned scientist from Poland and from abroad.