{"title":"芽孢杆菌sp. IMV B-7883蛋白酶的分离与鉴定","authors":"O. V. Gudzenko, L. D. Varbanets","doi":"10.15407/ubj95.05.098","DOIUrl":null,"url":null,"abstract":"The representatives of Bacillus are some of the best protease producers studied so far since they exhibit broad substrate specificity, significant activity, stability, simple downstream purification, short period of fermentation and low cost. Earlier, we showed that Bacillus sp. IMV B-7883 strain synthesizes an extracellular proteases, which exhibit elastolytic and fibrinogenolytic activity. The aim of the work was to isolate and purify these enzymes from the culture liquid of the Bacillus sp. IMV B-7883 strain, as well as to study their properties. Isolation and purification of proteases was carried out by precipitation of the culture liquid with ammonium sulfate, gel permeation and ion exchange chromatography and rechromatography on Sepharose 6B. As a result, proteases with elastolytic and fibrinogenolytic activity with a molecular weight of 23 and 20 kDa respectively were isolated with elastase activity increased by 63.6 and fibrinogenolytic activity by 44.1 times. The enzyme with elastase activity had a pH-optimum of 7.0 and hydrolyzed only elastin, while the enzyme with fibrinogenolytic activity was an alkaline protease with a pH-optimum of 8.0 and in addition to fibrinogen, showed specificity for fibrin and, in trace amounts, for collagen. Keywords: Bacillus sp. IMV B-7883, elastase, fibrinogenase, pH optimum, substrate specificity","PeriodicalId":23448,"journal":{"name":"Ukrainian Biochemical Journal","volume":"2018 22","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and characterization of Bacillus sp. IMV B-7883 proteases\",\"authors\":\"O. V. Gudzenko, L. D. Varbanets\",\"doi\":\"10.15407/ubj95.05.098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The representatives of Bacillus are some of the best protease producers studied so far since they exhibit broad substrate specificity, significant activity, stability, simple downstream purification, short period of fermentation and low cost. Earlier, we showed that Bacillus sp. IMV B-7883 strain synthesizes an extracellular proteases, which exhibit elastolytic and fibrinogenolytic activity. The aim of the work was to isolate and purify these enzymes from the culture liquid of the Bacillus sp. IMV B-7883 strain, as well as to study their properties. Isolation and purification of proteases was carried out by precipitation of the culture liquid with ammonium sulfate, gel permeation and ion exchange chromatography and rechromatography on Sepharose 6B. As a result, proteases with elastolytic and fibrinogenolytic activity with a molecular weight of 23 and 20 kDa respectively were isolated with elastase activity increased by 63.6 and fibrinogenolytic activity by 44.1 times. The enzyme with elastase activity had a pH-optimum of 7.0 and hydrolyzed only elastin, while the enzyme with fibrinogenolytic activity was an alkaline protease with a pH-optimum of 8.0 and in addition to fibrinogen, showed specificity for fibrin and, in trace amounts, for collagen. Keywords: Bacillus sp. IMV B-7883, elastase, fibrinogenase, pH optimum, substrate specificity\",\"PeriodicalId\":23448,\"journal\":{\"name\":\"Ukrainian Biochemical Journal\",\"volume\":\"2018 22\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Biochemical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ubj95.05.098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Biochemical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ubj95.05.098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Isolation and characterization of Bacillus sp. IMV B-7883 proteases
The representatives of Bacillus are some of the best protease producers studied so far since they exhibit broad substrate specificity, significant activity, stability, simple downstream purification, short period of fermentation and low cost. Earlier, we showed that Bacillus sp. IMV B-7883 strain synthesizes an extracellular proteases, which exhibit elastolytic and fibrinogenolytic activity. The aim of the work was to isolate and purify these enzymes from the culture liquid of the Bacillus sp. IMV B-7883 strain, as well as to study their properties. Isolation and purification of proteases was carried out by precipitation of the culture liquid with ammonium sulfate, gel permeation and ion exchange chromatography and rechromatography on Sepharose 6B. As a result, proteases with elastolytic and fibrinogenolytic activity with a molecular weight of 23 and 20 kDa respectively were isolated with elastase activity increased by 63.6 and fibrinogenolytic activity by 44.1 times. The enzyme with elastase activity had a pH-optimum of 7.0 and hydrolyzed only elastin, while the enzyme with fibrinogenolytic activity was an alkaline protease with a pH-optimum of 8.0 and in addition to fibrinogen, showed specificity for fibrin and, in trace amounts, for collagen. Keywords: Bacillus sp. IMV B-7883, elastase, fibrinogenase, pH optimum, substrate specificity
期刊介绍:
The Ukrainian Biochemical Journal publishes original research papers, reviews and brief notes; papers on research methods and techniques; articles on the history of biochemistry, its development and prominent figures; discussion articles; book reviews; chronicles; etc. The journal scope includes not only biochemistry but also related sciences, such as cellular and molecular biology, bioorganic chemistry, biophysics, pharmacology, genetics, and medicine (medical biochemistry et al.) – insofar as the studies use biochemical methods and discuss biochemical findings.