{"title":"二维问题的有限差分算子","authors":"","doi":"10.24425/bpasts.2020.135387","DOIUrl":null,"url":null,"abstract":". This paper presents the concept of using algorithms for reducing the dimensions of finite-difference equations of two-dimensional (2D) problems, for second-order partial differential equations. Solutions are predicted as two-variable functions over the rectangular domain, which are periodic with respect to each variable and which repeat outside the domain. Novel finite-difference operators, of both the first and second orders, are developed for such functions. These operators relate the value of derivatives at each point to the values of the function at all points distributed uniformly over the function domain. A specific feature of the novel operators follows from the arrangement of the function values as well as the values of derivatives, which are rectangular matrices instead of vectors. This significantly reduces the dimensions of the finite-difference operators to the numbers of points in each direction of the 2D area. The finite-difference equations are created exemplary for elliptic equations. An original iterative algorithm is proposed for reducing the process of solving finite-difference equations to the multiplication of matrices.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"357 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-Difference Operators for 2D problems\",\"authors\":\"\",\"doi\":\"10.24425/bpasts.2020.135387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper presents the concept of using algorithms for reducing the dimensions of finite-difference equations of two-dimensional (2D) problems, for second-order partial differential equations. Solutions are predicted as two-variable functions over the rectangular domain, which are periodic with respect to each variable and which repeat outside the domain. Novel finite-difference operators, of both the first and second orders, are developed for such functions. These operators relate the value of derivatives at each point to the values of the function at all points distributed uniformly over the function domain. A specific feature of the novel operators follows from the arrangement of the function values as well as the values of derivatives, which are rectangular matrices instead of vectors. This significantly reduces the dimensions of the finite-difference operators to the numbers of points in each direction of the 2D area. The finite-difference equations are created exemplary for elliptic equations. An original iterative algorithm is proposed for reducing the process of solving finite-difference equations to the multiplication of matrices.\",\"PeriodicalId\":55299,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/bpasts.2020.135387\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/bpasts.2020.135387","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
. This paper presents the concept of using algorithms for reducing the dimensions of finite-difference equations of two-dimensional (2D) problems, for second-order partial differential equations. Solutions are predicted as two-variable functions over the rectangular domain, which are periodic with respect to each variable and which repeat outside the domain. Novel finite-difference operators, of both the first and second orders, are developed for such functions. These operators relate the value of derivatives at each point to the values of the function at all points distributed uniformly over the function domain. A specific feature of the novel operators follows from the arrangement of the function values as well as the values of derivatives, which are rectangular matrices instead of vectors. This significantly reduces the dimensions of the finite-difference operators to the numbers of points in each direction of the 2D area. The finite-difference equations are created exemplary for elliptic equations. An original iterative algorithm is proposed for reducing the process of solving finite-difference equations to the multiplication of matrices.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.