Mary Adebola Ajiboye, Matthew Sunday Abolarin, Johnson Adegbenga Ajiboye, Abraham Usman Usman, Sanjay Misra
{"title":"结对编程-随机结对和个人初级程序员的立方预测模型结果","authors":"Mary Adebola Ajiboye, Matthew Sunday Abolarin, Johnson Adegbenga Ajiboye, Abraham Usman Usman, Sanjay Misra","doi":"10.37394/232025.2023.5.18","DOIUrl":null,"url":null,"abstract":"Due to the rapidly evolving technology in the dynamic world, there is a growing desire among software clients for swift delivery of high-quality software. Agile software development satisfies this need and has been widely and appropriately accepted by software professionals. The maintainability of such software, however, has a significant impact on its quality. Unfortunately, existing works neglected to consider timely delivery and instead concentrated primarily on the flexibility component of maintainability. This research looked at maintainability as a function of time to rectify codes among Individual Junior and Random pair software developers. Data was acquired from an experiment performed on software developers in the agile environment and analyzed to develop the quality model metrics for maintainability which was used for prediction. One hundred programmers each received a set of agile codes created in the Python programming language, with deliberate bugs ranging from one to ten. The cubic regression model was used for predicting time spent on debugging errors above ten bugs. Results show that the random pair programmers spent an average time of 21.88 min/error while the individual programmers spent a lesser time of 16.57 min/error.","PeriodicalId":52482,"journal":{"name":"世界地震工程","volume":"1992 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pair Programming – Cubic Prediction Model Results for Random Pairs and Individual Junior Programmers\",\"authors\":\"Mary Adebola Ajiboye, Matthew Sunday Abolarin, Johnson Adegbenga Ajiboye, Abraham Usman Usman, Sanjay Misra\",\"doi\":\"10.37394/232025.2023.5.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the rapidly evolving technology in the dynamic world, there is a growing desire among software clients for swift delivery of high-quality software. Agile software development satisfies this need and has been widely and appropriately accepted by software professionals. The maintainability of such software, however, has a significant impact on its quality. Unfortunately, existing works neglected to consider timely delivery and instead concentrated primarily on the flexibility component of maintainability. This research looked at maintainability as a function of time to rectify codes among Individual Junior and Random pair software developers. Data was acquired from an experiment performed on software developers in the agile environment and analyzed to develop the quality model metrics for maintainability which was used for prediction. One hundred programmers each received a set of agile codes created in the Python programming language, with deliberate bugs ranging from one to ten. The cubic regression model was used for predicting time spent on debugging errors above ten bugs. Results show that the random pair programmers spent an average time of 21.88 min/error while the individual programmers spent a lesser time of 16.57 min/error.\",\"PeriodicalId\":52482,\"journal\":{\"name\":\"世界地震工程\",\"volume\":\"1992 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"世界地震工程\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232025.2023.5.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"世界地震工程","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232025.2023.5.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Pair Programming – Cubic Prediction Model Results for Random Pairs and Individual Junior Programmers
Due to the rapidly evolving technology in the dynamic world, there is a growing desire among software clients for swift delivery of high-quality software. Agile software development satisfies this need and has been widely and appropriately accepted by software professionals. The maintainability of such software, however, has a significant impact on its quality. Unfortunately, existing works neglected to consider timely delivery and instead concentrated primarily on the flexibility component of maintainability. This research looked at maintainability as a function of time to rectify codes among Individual Junior and Random pair software developers. Data was acquired from an experiment performed on software developers in the agile environment and analyzed to develop the quality model metrics for maintainability which was used for prediction. One hundred programmers each received a set of agile codes created in the Python programming language, with deliberate bugs ranging from one to ten. The cubic regression model was used for predicting time spent on debugging errors above ten bugs. Results show that the random pair programmers spent an average time of 21.88 min/error while the individual programmers spent a lesser time of 16.57 min/error.
世界地震工程Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
0.80
自引率
0.00%
发文量
4131
期刊介绍:
World Earthquake Engineering was founded in 1985 and is now a quarterly journal. It is an academic journal in the field of earthquake engineering under the supervision of China Earthquake Administration (CEA), and co-sponsored by the Institute of Engineering Mechanics of China Earthquake Administration (IEMCA) and the Chinese Society of Mechanics (CSM). The journal aims to introduce the latest research results in the field of earthquake engineering at home and abroad, to promote international academic exchanges in the field of earthquake engineering, and to serve China's seismic prevention and anti-seismic work. China Association for Science and Technology (CAST) selected China's high-quality scientific and technological journals in different fields for its hierarchical catalogue, and the journal was selected as T2 level (internationally renowned journals) of earth science and geophysical journals. Outstanding journal for the implementation of the CAJ-CD Code in the implementation of the Chinese Academic Journals (CD-ROM Version) Retrieval and Evaluation Data Specification (CAJ-CD Code) in the evaluation of excellence activities; included in the cultivation bank of Heilongjiang Province's high-quality journal projects.