{"title":"相互作用的单标量场势和完美流体动力学","authors":"Artur Alho, Vitor Bessa, Filipe C. Mena","doi":"10.1007/s10884-023-10318-7","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by cosmological models of the early universe we analyse the dynamics of the Einstein equations with a minimally coupled scalar field with monomial potentials $$V(\\phi )=\\frac{(\\lambda \\phi )^{2n}}{2n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mfrac> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:math> , $$\\lambda >0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$n\\in {\\mathbb {N}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> , interacting with a perfect fluid with linear equation of state $$p_{\\textrm{pf}}=(\\gamma _{\\textrm{pf}}-1)\\rho _{\\textrm{pf}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> </mml:mrow> </mml:math> , $$\\gamma _{\\textrm{pf}}\\in (0,2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , in flat Robertson–Walker spacetimes. The interaction is a friction-like term of the form $$\\Gamma (\\phi )=\\mu \\phi ^{2p}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , $$\\mu >0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$p\\in {\\mathbb {N}}\\cup \\{0\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> <mml:mo>∪</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> . The analysis relies on the introduction of a new regular 3-dimensional dynamical systems’ formulation of the Einstein equations on a compact state space, and the use of dynamical systems’ tools such as quasi-homogeneous blow-ups and averaging methods involving a time-dependent perturbation parameter.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics of Interacting Monomial Scalar Field Potentials and Perfect Fluids\",\"authors\":\"Artur Alho, Vitor Bessa, Filipe C. Mena\",\"doi\":\"10.1007/s10884-023-10318-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by cosmological models of the early universe we analyse the dynamics of the Einstein equations with a minimally coupled scalar field with monomial potentials $$V(\\\\phi )=\\\\frac{(\\\\lambda \\\\phi )^{2n}}{2n}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mfrac> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:math> , $$\\\\lambda >0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$n\\\\in {\\\\mathbb {N}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> , interacting with a perfect fluid with linear equation of state $$p_{\\\\textrm{pf}}=(\\\\gamma _{\\\\textrm{pf}}-1)\\\\rho _{\\\\textrm{pf}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> </mml:mrow> </mml:math> , $$\\\\gamma _{\\\\textrm{pf}}\\\\in (0,2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , in flat Robertson–Walker spacetimes. The interaction is a friction-like term of the form $$\\\\Gamma (\\\\phi )=\\\\mu \\\\phi ^{2p}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>Γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , $$\\\\mu >0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$p\\\\in {\\\\mathbb {N}}\\\\cup \\\\{0\\\\}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> <mml:mo>∪</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> . The analysis relies on the introduction of a new regular 3-dimensional dynamical systems’ formulation of the Einstein equations on a compact state space, and the use of dynamical systems’ tools such as quasi-homogeneous blow-ups and averaging methods involving a time-dependent perturbation parameter.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-023-10318-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10884-023-10318-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics of Interacting Monomial Scalar Field Potentials and Perfect Fluids
Abstract Motivated by cosmological models of the early universe we analyse the dynamics of the Einstein equations with a minimally coupled scalar field with monomial potentials $$V(\phi )=\frac{(\lambda \phi )^{2n}}{2n}$$ V(ϕ)=(λϕ)2n2n , $$\lambda >0$$ λ>0 , $$n\in {\mathbb {N}}$$ n∈N , interacting with a perfect fluid with linear equation of state $$p_{\textrm{pf}}=(\gamma _{\textrm{pf}}-1)\rho _{\textrm{pf}}$$ ppf=(γpf-1)ρpf , $$\gamma _{\textrm{pf}}\in (0,2)$$ γpf∈(0,2) , in flat Robertson–Walker spacetimes. The interaction is a friction-like term of the form $$\Gamma (\phi )=\mu \phi ^{2p}$$ Γ(ϕ)=μϕ2p , $$\mu >0$$ μ>0 , $$p\in {\mathbb {N}}\cup \{0\}$$ p∈N∪{0} . The analysis relies on the introduction of a new regular 3-dimensional dynamical systems’ formulation of the Einstein equations on a compact state space, and the use of dynamical systems’ tools such as quasi-homogeneous blow-ups and averaging methods involving a time-dependent perturbation parameter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.