相互作用的单标量场势和完美流体动力学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Artur Alho, Vitor Bessa, Filipe C. Mena
{"title":"相互作用的单标量场势和完美流体动力学","authors":"Artur Alho, Vitor Bessa, Filipe C. Mena","doi":"10.1007/s10884-023-10318-7","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by cosmological models of the early universe we analyse the dynamics of the Einstein equations with a minimally coupled scalar field with monomial potentials $$V(\\phi )=\\frac{(\\lambda \\phi )^{2n}}{2n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mfrac> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:math> , $$\\lambda &gt;0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$n\\in {\\mathbb {N}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> , interacting with a perfect fluid with linear equation of state $$p_{\\textrm{pf}}=(\\gamma _{\\textrm{pf}}-1)\\rho _{\\textrm{pf}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> </mml:mrow> </mml:math> , $$\\gamma _{\\textrm{pf}}\\in (0,2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , in flat Robertson–Walker spacetimes. The interaction is a friction-like term of the form $$\\Gamma (\\phi )=\\mu \\phi ^{2p}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , $$\\mu &gt;0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$p\\in {\\mathbb {N}}\\cup \\{0\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> <mml:mo>∪</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> . The analysis relies on the introduction of a new regular 3-dimensional dynamical systems’ formulation of the Einstein equations on a compact state space, and the use of dynamical systems’ tools such as quasi-homogeneous blow-ups and averaging methods involving a time-dependent perturbation parameter.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamics of Interacting Monomial Scalar Field Potentials and Perfect Fluids\",\"authors\":\"Artur Alho, Vitor Bessa, Filipe C. Mena\",\"doi\":\"10.1007/s10884-023-10318-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by cosmological models of the early universe we analyse the dynamics of the Einstein equations with a minimally coupled scalar field with monomial potentials $$V(\\\\phi )=\\\\frac{(\\\\lambda \\\\phi )^{2n}}{2n}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mfrac> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:math> , $$\\\\lambda &gt;0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$n\\\\in {\\\\mathbb {N}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> , interacting with a perfect fluid with linear equation of state $$p_{\\\\textrm{pf}}=(\\\\gamma _{\\\\textrm{pf}}-1)\\\\rho _{\\\\textrm{pf}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> </mml:mrow> </mml:math> , $$\\\\gamma _{\\\\textrm{pf}}\\\\in (0,2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , in flat Robertson–Walker spacetimes. The interaction is a friction-like term of the form $$\\\\Gamma (\\\\phi )=\\\\mu \\\\phi ^{2p}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>Γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , $$\\\\mu &gt;0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$p\\\\in {\\\\mathbb {N}}\\\\cup \\\\{0\\\\}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> <mml:mo>∪</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> . The analysis relies on the introduction of a new regular 3-dimensional dynamical systems’ formulation of the Einstein equations on a compact state space, and the use of dynamical systems’ tools such as quasi-homogeneous blow-ups and averaging methods involving a time-dependent perturbation parameter.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-023-10318-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10884-023-10318-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要在早期宇宙的宇宙学模型的激励下,我们分析了具有最小耦合标量场的爱因斯坦方程的动力学,该场具有单项式势$$V(\phi )=\frac{(\lambda \phi )^{2n}}{2n}$$ V (ϕ) = (λ ϕ) 2 n 2 n, $$\lambda >0$$ λ &gt;0, $$n\in {\mathbb {N}}$$ n∈n,在平坦的Robertson-Walker时空中与具有线性状态方程$$p_{\textrm{pf}}=(\gamma _{\textrm{pf}}-1)\rho _{\textrm{pf}}$$ p pf = (γ pf - 1) ρ pf, $$\gamma _{\textrm{pf}}\in (0,2)$$ γ pf∈(0,2)的完美流体相互作用。相互作用是类似摩擦的项,形式为$$\Gamma (\phi )=\mu \phi ^{2p}$$ Γ (ϕ) = μ ϕ 2 p, $$\mu >0$$ μ &gt;0, $$p\in {\mathbb {N}}\cup \{0\}$$ p∈N∪{0}。该分析依赖于在紧致状态空间上引入一种新的正则三维动力系统爱因斯坦方程公式,以及使用动力系统工具,如准齐次爆炸和涉及时间相关扰动参数的平均方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamics of Interacting Monomial Scalar Field Potentials and Perfect Fluids

Dynamics of Interacting Monomial Scalar Field Potentials and Perfect Fluids
Abstract Motivated by cosmological models of the early universe we analyse the dynamics of the Einstein equations with a minimally coupled scalar field with monomial potentials $$V(\phi )=\frac{(\lambda \phi )^{2n}}{2n}$$ V ( ϕ ) = ( λ ϕ ) 2 n 2 n , $$\lambda >0$$ λ > 0 , $$n\in {\mathbb {N}}$$ n N , interacting with a perfect fluid with linear equation of state $$p_{\textrm{pf}}=(\gamma _{\textrm{pf}}-1)\rho _{\textrm{pf}}$$ p pf = ( γ pf - 1 ) ρ pf , $$\gamma _{\textrm{pf}}\in (0,2)$$ γ pf ( 0 , 2 ) , in flat Robertson–Walker spacetimes. The interaction is a friction-like term of the form $$\Gamma (\phi )=\mu \phi ^{2p}$$ Γ ( ϕ ) = μ ϕ 2 p , $$\mu >0$$ μ > 0 , $$p\in {\mathbb {N}}\cup \{0\}$$ p N { 0 } . The analysis relies on the introduction of a new regular 3-dimensional dynamical systems’ formulation of the Einstein equations on a compact state space, and the use of dynamical systems’ tools such as quasi-homogeneous blow-ups and averaging methods involving a time-dependent perturbation parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信